Constructibility in Ackermann's set theory
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1982
Access Full Book
topAbstract
topHow to cite
topC. Alkor. Constructibility in Ackermann's set theory. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1982. <http://eudml.org/doc/268536>.
@book{C1982,
abstract = {CONTENTSIntroduction......................... 5Section I. Preliminaries............ 6 § 1. Notation..................... 6 § 2. Ackermann’s set theory and some extensions................. 7 § 3. Absoluteness............................................... 8 § 4. Ordinals................................................... 9 § 5. Reflection principles...................................... 10Section 2. The usual notion of constructibility.............. 11 § 1. General considerations about the constructibility in A...... 11 § 2. Definitions of some syntactic and semantic notions.......... 12 § 3. The formula $w=L̂_β$...................................... 15 § 4. Satisfaction................................................. 16 § 5. Extendability of ZF-models to models of A.................... 17Section 3. The constructible universe Λ........................... 19 § 1. The formula H(w, β, V)...................................... 19 § 2. Some results concerning the formula $w = H_β$............... 20 § 3. Proof of the main theorem.................................... 24 § 4. The minimal model of A...................................... 28 § 5. Ordinal definable classes................................... 29 § 6. Constructibility in related theories........................ 33References....................................................... 36},
author = {C. Alkor},
keywords = {constructibility; Ackermann's set theory},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Constructibility in Ackermann's set theory},
url = {http://eudml.org/doc/268536},
year = {1982},
}
TY - BOOK
AU - C. Alkor
TI - Constructibility in Ackermann's set theory
PY - 1982
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction......................... 5Section I. Preliminaries............ 6 § 1. Notation..................... 6 § 2. Ackermann’s set theory and some extensions................. 7 § 3. Absoluteness............................................... 8 § 4. Ordinals................................................... 9 § 5. Reflection principles...................................... 10Section 2. The usual notion of constructibility.............. 11 § 1. General considerations about the constructibility in A...... 11 § 2. Definitions of some syntactic and semantic notions.......... 12 § 3. The formula $w=L̂_β$...................................... 15 § 4. Satisfaction................................................. 16 § 5. Extendability of ZF-models to models of A.................... 17Section 3. The constructible universe Λ........................... 19 § 1. The formula H(w, β, V)...................................... 19 § 2. Some results concerning the formula $w = H_β$............... 20 § 3. Proof of the main theorem.................................... 24 § 4. The minimal model of A...................................... 28 § 5. Ordinal definable classes................................... 29 § 6. Constructibility in related theories........................ 33References....................................................... 36
LA - eng
KW - constructibility; Ackermann's set theory
UR - http://eudml.org/doc/268536
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.