Constructibility in Ackermann's set theory

C. Alkor

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1982

Abstract

top
CONTENTSIntroduction......................... 5Section I. Preliminaries............ 6 § 1. Notation..................... 6 § 2. Ackermann’s set theory and some extensions................. 7 § 3. Absoluteness............................................... 8 § 4. Ordinals................................................... 9 § 5. Reflection principles...................................... 10Section 2. The usual notion of constructibility.............. 11 § 1. General considerations about the constructibility in A...... 11 § 2. Definitions of some syntactic and semantic notions.......... 12 § 3. The formula w = L ̂ β ...................................... 15 § 4. Satisfaction................................................. 16 § 5. Extendability of ZF-models to models of A.................... 17Section 3. The constructible universe Λ........................... 19 § 1. The formula H(w, β, V)...................................... 19 § 2. Some results concerning the formula w = H β ............... 20 § 3. Proof of the main theorem.................................... 24 § 4. The minimal model of A...................................... 28 § 5. Ordinal definable classes................................... 29 § 6. Constructibility in related theories........................ 33References....................................................... 36

How to cite

top

C. Alkor. Constructibility in Ackermann's set theory. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1982. <http://eudml.org/doc/268536>.

@book{C1982,
abstract = {CONTENTSIntroduction......................... 5Section I. Preliminaries............ 6 § 1. Notation..................... 6 § 2. Ackermann’s set theory and some extensions................. 7 § 3. Absoluteness............................................... 8 § 4. Ordinals................................................... 9 § 5. Reflection principles...................................... 10Section 2. The usual notion of constructibility.............. 11 § 1. General considerations about the constructibility in A...... 11 § 2. Definitions of some syntactic and semantic notions.......... 12 § 3. The formula $w=L̂_β$...................................... 15 § 4. Satisfaction................................................. 16 § 5. Extendability of ZF-models to models of A.................... 17Section 3. The constructible universe Λ........................... 19 § 1. The formula H(w, β, V)...................................... 19 § 2. Some results concerning the formula $w = H_β$............... 20 § 3. Proof of the main theorem.................................... 24 § 4. The minimal model of A...................................... 28 § 5. Ordinal definable classes................................... 29 § 6. Constructibility in related theories........................ 33References....................................................... 36},
author = {C. Alkor},
keywords = {constructibility; Ackermann's set theory},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Constructibility in Ackermann's set theory},
url = {http://eudml.org/doc/268536},
year = {1982},
}

TY - BOOK
AU - C. Alkor
TI - Constructibility in Ackermann's set theory
PY - 1982
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction......................... 5Section I. Preliminaries............ 6 § 1. Notation..................... 6 § 2. Ackermann’s set theory and some extensions................. 7 § 3. Absoluteness............................................... 8 § 4. Ordinals................................................... 9 § 5. Reflection principles...................................... 10Section 2. The usual notion of constructibility.............. 11 § 1. General considerations about the constructibility in A...... 11 § 2. Definitions of some syntactic and semantic notions.......... 12 § 3. The formula $w=L̂_β$...................................... 15 § 4. Satisfaction................................................. 16 § 5. Extendability of ZF-models to models of A.................... 17Section 3. The constructible universe Λ........................... 19 § 1. The formula H(w, β, V)...................................... 19 § 2. Some results concerning the formula $w = H_β$............... 20 § 3. Proof of the main theorem.................................... 24 § 4. The minimal model of A...................................... 28 § 5. Ordinal definable classes................................... 29 § 6. Constructibility in related theories........................ 33References....................................................... 36
LA - eng
KW - constructibility; Ackermann's set theory
UR - http://eudml.org/doc/268536
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.