Displaying similar documents to “Constructibility in Ackermann's set theory”

Characterizing the powerset by a complete (Scott) sentence

Ioannis Souldatos (2013)

Fundamenta Mathematicae

Similarity:

This paper is part II of a study on cardinals that are characterizable by a Scott sentence, continuing previous work of the author. A cardinal κ is characterized by a Scott sentence ϕ if ϕ has a model of size κ, but no model of size κ⁺. The main question in this paper is the following: Are the characterizable cardinals closed under the powerset operation? We prove that if β is characterized by a Scott sentence, then 2 β + β is (homogeneously) characterized by a Scott sentence, for all 0 <...

Counting models of set theory

Ali Enayat (2002)

Fundamenta Mathematicae

Similarity:

Let T denote a completion of ZF. We are interested in the number μ(T) of isomorphism types of countable well-founded models of T. Given any countable order type τ, we are also interested in the number μ(T,τ) of isomorphism types of countable models of T whose ordinals have order type τ. We prove: (1) Suppose ZFC has an uncountable well-founded model and κ ω , , 2 . There is some completion T of ZF such that μ(T) = κ. (2) If α <ω₁ and μ(T,α) > ℵ₀, then μ ( T , α ) = 2 . (3) If α < ω₁ and T ⊢ V ≠ OD,...

On sentences provable in impredicative extensions of theories

Zygmunt Ratajczyk

Similarity:

CONTENTS0. Introduction.......................................................................... 51. Preliminaries............................................................................... 72. Basic facts to be used in the sequel....................................... 113. Predicates OD(.,.) and CL(.,.).................................................... 174. Predicate Sels............................................................................. 185. Strong n 1 -collection...........................................................

On ordinals accessible by infinitary languages

Saharon Shelah, Pauli Väisänen, Jouko Väänänen (2005)

Fundamenta Mathematicae

Similarity:

Let λ be an infinite cardinal number. The ordinal number δ(λ) is the least ordinal γ such that if ϕ is any sentence of L λ ω , with a unary predicate D and a binary predicate ≺, and ϕ has a model ℳ with D , a well-ordering of type ≥ γ, then ϕ has a model ℳ ’ where D ' , ' is non-well-ordered. One of the interesting properties of this number is that the Hanf number of L λ ω is exactly δ ( λ ) . It was proved in [BK71] that if ℵ₀ < λ < κ a r e r e g u l a r c a r d i n a l n u m b e r s , t h e n t h e r e i s a f o r c i n g e x t e n s i o n , p r e s e r v i n g c o f i n a l i t i e s , s u c h t h a t i n t h e e x t e n s i o n 2λ = κ a n d δ ( λ ) < λ . W e i m p r o v e t h i s r e s u l t b y p r o v i n g t h e f o l l o w i n g : S u p p o s e < λ < θ κ a r e c a r d i n a l n u m b e r s s u c h t h a t λ < λ = λ ; ∙ cf(θ) ≥ λ⁺ and μ λ < θ whenever μ < θ; ∙ κ λ = κ . Then there...

Locally Σ₁-definable well-orders of H(κ⁺)

Peter Holy, Philipp Lücke (2014)

Fundamenta Mathematicae

Similarity:

Given an uncountable cardinal κ with κ = κ < κ and 2 κ regular, we show that there is a forcing that preserves cofinalities less than or equal to 2 κ and forces the existence of a well-order of H(κ⁺) that is definable over ⟨H(κ⁺),∈⟩ by a Σ₁-formula with parameters. This shows that, in contrast to the case "κ = ω", the existence of a locally definable well-order of H(κ⁺) of low complexity is consistent with failures of the GCH at κ. We also show that the forcing mentioned above introduces a Bernstein...

Generic extensions of models of ZFC

Lev Bukovský (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The paper contains a self-contained alternative proof of my Theorem in Characterization of generic extensions of models of set theory, Fund. Math. 83 (1973), 35–46, saying that for models M N of ZFC with same ordinals, the condition A p r M , N ( κ ) implies that N is a κ -C.C. generic extension of M .

Embedding orders into the cardinals with D C κ

Asaf Karagila (2014)

Fundamenta Mathematicae

Similarity:

Jech proved that every partially ordered set can be embedded into the cardinals of some model of ZF. We extend this result to show that every partially ordered set can be embedded into the cardinals of some model of Z F + D C < κ for any regular κ. We use this theorem to show that for all κ, the assumption of D C κ does not entail that there are no decreasing chains of cardinals. We also show how to extend the result to and embed into the cardinals a proper class which is definable over the ground model....

Definable stratification satisfying the Whitney property with exponent 1

Beata Kocel-Cynk (2007)

Annales Polonici Mathematici

Similarity:

We prove that for a finite collection of sets A , . . . , A s k + n definable in an o-minimal structure there exists a compatible definable stratification such that for any stratum the fibers of its projection onto k satisfy the Whitney property with exponent 1.

Preservation of properties of a map by forcing

Akira Iwasa (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let f : X Y be a continuous map such as an open map, a closed map or a quotient map. We study under what circumstances f remains an open, closed or quotient map in forcing extensions.

Decidability and definability results related to the elementary theory of ordinal multiplication

Alexis Bès (2002)

Fundamenta Mathematicae

Similarity:

The elementary theory of ⟨α;×⟩, where α is an ordinal and × denotes ordinal multiplication, is decidable if and only if α < ω ω . Moreover if | r and | l respectively denote the right- and left-hand divisibility relation, we show that Th ω ω ξ ; | r and Th ω ξ ; | l are decidable for every ordinal ξ. Further related definability results are also presented.

Coloring ordinals by reals

Jörg Brendle, Sakaé Fuchino (2007)

Fundamenta Mathematicae

Similarity:

We study combinatorial principles we call the Homogeneity Principle HP(κ) and the Injectivity Principle IP(κ,λ) for regular κ > ℵ₁ and λ ≤ κ which are formulated in terms of coloring the ordinals < κ by reals. These principles are strengthenings of C s ( κ ) and F s ( κ ) of I. Juhász, L. Soukup and Z. Szentmiklóssy. Generalizing their results, we show e.g. that IP(ℵ₂,ℵ₁) (hence also IP(ℵ₂,ℵ₂) as well as HP(ℵ₂)) holds in a generic extension of a model of CH by Cohen forcing, and IP(ℵ₂,ℵ₂) (hence...

Propositional extensions of L ω 1 ω

Richard Gostanian, Karel Hrbacek

Similarity:

CONTENTS0. Preliminaries....................................................................... 71. Adding propositional connectives to L ω 1 ω ............... 82. The propositional part of L ω 1 ω (S)............................. 103. The operation S and the Boolean algebra B S ............... 114. General model-theoretic properties of L ω 1 ω (S)...... 175. Hanf number computations...................................................... 226. Negative results for L ω 1 ω (S)...........................................

Zero-set property of o-minimal indefinitely Peano differentiable functions

Andreas Fischer (2008)

Annales Polonici Mathematici

Similarity:

Given an o-minimal expansion ℳ of a real closed field R which is not polynomially bounded. Let denote the definable indefinitely Peano differentiable functions. If we further assume that ℳ admits cell decomposition, each definable closed subset A of Rⁿ is the zero-set of a function f:Rⁿ → R. This implies approximation of definable continuous functions and gluing of functions defined on closed definable sets.

Uncountable cardinals have the same monadic ∀₁¹ positive theory over large sets

Athanassios Tzouvaras (2004)

Fundamenta Mathematicae

Similarity:

We show that uncountable cardinals are indistinguishable by sentences of the monadic second-order language of order of the form (∀X)ϕ(X) and (∃X)ϕ(X), for ϕ positive in X and containing no set-quantifiers, when the set variables range over large (= cofinal) subsets of the cardinals. This strengthens the result of Doner-Mostowski-Tarski [3] that (κ,∈), (λ,∈) are elementarily equivalent when κ, λ are uncountable. It follows that we can consistently postulate that the structures ( 2 κ , [ 2 κ ] > κ , < ) , ( 2 λ , [ 2 λ ] > λ , < ) are...

Existentially closed II₁ factors

Ilijas Farah, Isaac Goldbring, Bradd Hart, David Sherman (2016)

Fundamenta Mathematicae

Similarity:

We examine the properties of existentially closed ( ω -embeddable) II₁ factors. In particular, we use the fact that every automorphism of an existentially closed ( ω -embeddable) II₁ factor is approximately inner to prove that Th() is not model-complete. We also show that Th() is complete for both finite and infinite forcing and use the latter result to prove that there exist continuum many nonisomorphic existentially closed models of Th().

Higher order spreading models

S. A. Argyros, V. Kanellopoulos, K. Tyros (2013)

Fundamenta Mathematicae

Similarity:

We introduce higher order spreading models associated to a Banach space X. Their definition is based on ℱ-sequences ( x s ) s with ℱ a regular thin family and on plegma families. We show that the higher order spreading models of a Banach space X form an increasing transfinite hierarchy ( ξ ( X ) ) ξ < ω . Each ξ ( X ) contains all spreading models generated by ℱ-sequences ( x s ) s with order of ℱ equal to ξ. We also study the fundamental properties of this hierarchy.

On the solvability of systems of linear equations over the ring of integers

Horst Herrlich, Eleftherios Tachtsis (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We investigate the question whether a system ( E i ) i I of homogeneous linear equations over is non-trivially solvable in provided that each subsystem ( E j ) j J with | J | c is non-trivially solvable in where c is a fixed cardinal number such that c < | I | . Among other results, we establish the following. (a) The answer is ‘No’ in the finite case (i.e., I being finite). (b) The answer is ‘No’ in the denumerable case (i.e., | I | = 0 and c a natural number). (c) The answer in case that I is uncountable and c 0 is ‘No...

On certain non-constructive properties of infinite-dimensional vector spaces

Eleftherios Tachtsis (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In set theory without the axiom of choice ( AC ), we study certain non-constructive properties of infinite-dimensional vector spaces. Among several results, we establish the following: (i) None of the principles AC LO (AC for linearly ordered families of nonempty sets)—and hence AC WO (AC for well-ordered families of nonempty sets)— DC ( < κ ) (where κ is an uncountable regular cardinal), and “for every infinite set X , there is a bijection f : X { 0 , 1 } × X ”, implies the statement “there exists a field F such that...

Definable orthogonality classes in accessible categories are small

Joan Bagaria, Carles Casacuberta, A. R. D. Mathias, Jiří Rosický (2015)

Journal of the European Mathematical Society

Similarity:

We lower substantially the strength of the assumptions needed for the validity of certain results in category theory and homotopy theory which were known to follow from Vopěnka’s principle. We prove that the necessary large-cardinal hypotheses depend on the complexity of the formulas defining the given classes, in the sense of the Lévy hierarchy. For example, the statement that, for a class 𝒮 of morphisms in a locally presentable category 𝒞 of structures, the orthogonal class of objects...

Another ⋄-like principle

Michael Hrušák (2001)

Fundamenta Mathematicae

Similarity:

A new ⋄-like principle consistent with the negation of the Continuum Hypothesis is introduced and studied. It is shown that ¬ is consistent with CH and that in many models of = ω₁ the principle holds. As implies that there is a MAD family of size ℵ₁ this provides a partial answer to a question of J. Roitman who asked whether = ω₁ implies = ω₁. It is proved that holds in any model obtained by adding a single Laver real, answering a question of J. Brendle who asked whether = ω₁...

Logarithmically improved blow-up criterion for smooth solutions to the Leray- α -magnetohydrodynamic equations

Ines Ben Omrane, Sadek Gala, Jae-Myoung Kim, Maria Alessandra Ragusa (2019)

Archivum Mathematicum

Similarity:

In this paper, the Cauchy problem for the 3 D Leray- α -MHD model is investigated. We obtain the logarithmically improved blow-up criterion of smooth solutions for the Leray- α -MHD model in terms of the magnetic field B only in the framework of homogeneous Besov space with negative index.

O-minimal fields with standard part map

Jana Maříková (2010)

Fundamenta Mathematicae

Similarity:

Let R be an o-minimal field and V a proper convex subring with residue field k and standard part (residue) map st: V → k. Let k i n d be the expansion of k by the standard parts of the definable relations in R. We investigate the definable sets in k i n d and conditions on (R,V) which imply o-minimality of k i n d . We also show that if R is ω-saturated and V is the convex hull of ℚ in R, then the sets definable in k i n d are exactly the standard parts of the sets definable in (R,V).

On the Set-Theoretic Strength of Countable Compactness of the Tychonoff Product 2

Eleftherios Tachtsis (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We work in ZF set theory (i.e., Zermelo-Fraenkel set theory minus the Axiom of Choice AC) and show the following: 1. The Axiom of Choice for well-ordered families of non-empty sets ( A C W O ) does not imply “the Tychonoff product 2 , where 2 is the discrete space 0,1, is countably compact” in ZF. This answers in the negative the following question from Keremedis, Felouzis, and Tachtsis [Bull. Polish Acad. Sci. Math. 55 (2007)]: Does the Countable Axiom of Choice for families of non-empty sets...

On a special class of left-continuous uninorms

Gang Li (2018)

Kybernetika

Similarity:

This paper is devoted to the study of a class of left-continuous uninorms locally internal in the region A ( e ) and the residual implications derived from them. It is shown that such uninorm can be represented as an ordinal sum of semigroups in the sense of Clifford. Moreover, the explicit expressions for the residual implication derived from this special class of uninorms are given. A set of axioms is presented that characterizes those binary functions I : [ 0 , 1 ] 2 [ 0 , 1 ] for which a uninorm U of this special...