Algebraic theory of fundamental dimension

Sławomir Nowak

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1981

Abstract

top
CONTENTSIntroduction......................................................................................................................................... 5Chapter I Elementary topological characterizations of fundamental dimension........................... 6 1. Characterizations of fundamental dimension..................................................................... 6 2. The fundamental dimension of components of compacta.............................................. 9 3. The fundamental dimension of the union of two compacta............................................. 10Chapter II Cohomology groups over local systems and generalized local systems................... 13 1. Local systems of groups......................................................................................................... 13 2. Cohomology with coefficients in local systems.................................................................. 16 3. The Künneth formula 4. Generalized local systems..................................................................................................... 20Chapter III Homological characterizations of fundamental dimension........................................... 22 1. Deformability of maps and the number................................................................................ 23 2. Obstructions to deformability.................................................................................................. 24 3. Coefficients of cyclicity and ℱ-continua................................................................................. 25 4. Continua with fundamental dimension ≥ 3........................................................................ 28 5. Two algebraic lemmas............................................................................................................ 29 6. Continua with fundamental dimension equal to 1............................................................. 31 7. Continua with fundamental dimension equal to 2............................................................. 33 8. The main results....................................................................................................................... 34Chapter IV Applications of the homological characterizations of fundamental dimensionto the study of some special problems................................................................................................. 37 1. The fundamental dimension of the Cartesian product of a closed manifoldand a continuum........................................................................................................................................ 37 2. The fundamental dimension of the Cartesian product of a curve and a continuum... 38 3. An example of a finite-dimensional continuum with an infinite family of shapefactors and the fundamental dimension of the Cartesian product of polyhedra........................... 42 4. The fundamental dimension of the union of two compacta and of the quotientspace............................................................................................................................................................ 43 5. The fundamental dimension of the suspension of a compactum.................................. 44 6. The fundamental dimension of the Cartesian product of approximative1-connected compacta............................................................................................................................. 46 7. The fundamental dimension of a subset of manifold....................................................... 48Final remarks and problems................................................................................................................... 50References.................................................................................................................................................. 52Index of symbols........................................................................................................................................ 54

How to cite

top

Sławomir Nowak. Algebraic theory of fundamental dimension. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1981. <http://eudml.org/doc/268538>.

@book{SławomirNowak1981,
abstract = {CONTENTSIntroduction......................................................................................................................................... 5Chapter I Elementary topological characterizations of fundamental dimension........................... 6 1. Characterizations of fundamental dimension..................................................................... 6 2. The fundamental dimension of components of compacta.............................................. 9 3. The fundamental dimension of the union of two compacta............................................. 10Chapter II Cohomology groups over local systems and generalized local systems................... 13 1. Local systems of groups......................................................................................................... 13 2. Cohomology with coefficients in local systems.................................................................. 16 3. The Künneth formula 4. Generalized local systems..................................................................................................... 20Chapter III Homological characterizations of fundamental dimension........................................... 22 1. Deformability of maps and the number................................................................................ 23 2. Obstructions to deformability.................................................................................................. 24 3. Coefficients of cyclicity and ℱ-continua................................................................................. 25 4. Continua with fundamental dimension ≥ 3........................................................................ 28 5. Two algebraic lemmas............................................................................................................ 29 6. Continua with fundamental dimension equal to 1............................................................. 31 7. Continua with fundamental dimension equal to 2............................................................. 33 8. The main results....................................................................................................................... 34Chapter IV Applications of the homological characterizations of fundamental dimensionto the study of some special problems................................................................................................. 37 1. The fundamental dimension of the Cartesian product of a closed manifoldand a continuum........................................................................................................................................ 37 2. The fundamental dimension of the Cartesian product of a curve and a continuum... 38 3. An example of a finite-dimensional continuum with an infinite family of shapefactors and the fundamental dimension of the Cartesian product of polyhedra........................... 42 4. The fundamental dimension of the union of two compacta and of the quotientspace............................................................................................................................................................ 43 5. The fundamental dimension of the suspension of a compactum.................................. 44 6. The fundamental dimension of the Cartesian product of approximative1-connected compacta............................................................................................................................. 46 7. The fundamental dimension of a subset of manifold....................................................... 48Final remarks and problems................................................................................................................... 50References.................................................................................................................................................. 52Index of symbols........................................................................................................................................ 54},
author = {Sławomir Nowak},
keywords = {fundamental dimension of compacts; topological characterizations of compacta with finite fundamental dimension; homological characterizations of the fundamental dimension; cohomology with coefficients in generalized local systems of abelian groups; obstruction theory; fundamental dimension of cartesian products; fundamental dimension of the product of a closed PL manifold and a continuum; unions and quotients of compacta; suspension of a compactum; products of approximatively 1-connected compacta},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Algebraic theory of fundamental dimension},
url = {http://eudml.org/doc/268538},
year = {1981},
}

TY - BOOK
AU - Sławomir Nowak
TI - Algebraic theory of fundamental dimension
PY - 1981
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction......................................................................................................................................... 5Chapter I Elementary topological characterizations of fundamental dimension........................... 6 1. Characterizations of fundamental dimension..................................................................... 6 2. The fundamental dimension of components of compacta.............................................. 9 3. The fundamental dimension of the union of two compacta............................................. 10Chapter II Cohomology groups over local systems and generalized local systems................... 13 1. Local systems of groups......................................................................................................... 13 2. Cohomology with coefficients in local systems.................................................................. 16 3. The Künneth formula 4. Generalized local systems..................................................................................................... 20Chapter III Homological characterizations of fundamental dimension........................................... 22 1. Deformability of maps and the number................................................................................ 23 2. Obstructions to deformability.................................................................................................. 24 3. Coefficients of cyclicity and ℱ-continua................................................................................. 25 4. Continua with fundamental dimension ≥ 3........................................................................ 28 5. Two algebraic lemmas............................................................................................................ 29 6. Continua with fundamental dimension equal to 1............................................................. 31 7. Continua with fundamental dimension equal to 2............................................................. 33 8. The main results....................................................................................................................... 34Chapter IV Applications of the homological characterizations of fundamental dimensionto the study of some special problems................................................................................................. 37 1. The fundamental dimension of the Cartesian product of a closed manifoldand a continuum........................................................................................................................................ 37 2. The fundamental dimension of the Cartesian product of a curve and a continuum... 38 3. An example of a finite-dimensional continuum with an infinite family of shapefactors and the fundamental dimension of the Cartesian product of polyhedra........................... 42 4. The fundamental dimension of the union of two compacta and of the quotientspace............................................................................................................................................................ 43 5. The fundamental dimension of the suspension of a compactum.................................. 44 6. The fundamental dimension of the Cartesian product of approximative1-connected compacta............................................................................................................................. 46 7. The fundamental dimension of a subset of manifold....................................................... 48Final remarks and problems................................................................................................................... 50References.................................................................................................................................................. 52Index of symbols........................................................................................................................................ 54
LA - eng
KW - fundamental dimension of compacts; topological characterizations of compacta with finite fundamental dimension; homological characterizations of the fundamental dimension; cohomology with coefficients in generalized local systems of abelian groups; obstruction theory; fundamental dimension of cartesian products; fundamental dimension of the product of a closed PL manifold and a continuum; unions and quotients of compacta; suspension of a compactum; products of approximatively 1-connected compacta
UR - http://eudml.org/doc/268538
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.