Compact Abelian groups and extensions of Haar measures

A. Hulanicki

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1964

Abstract

top
ContentsIntroduction.................................................................................................................... 31. Preliminaries (topology measure).................................................................... 32. Problems and the theorem.................................................................................... 73. Preliminaries (abstract groups, Cartesian products)....................................... 94. Preliminaries (automorphisms, duality theory).................................................. 135. Compact groups....................................................................................................... 156. Theorems on the groups D p ........................................................................... 187. A decomposition of compact groups.................................................................... 278. Groups in which all compact topologies are isomorphic................................ 339. The class M............................................................................................................... 4010. Proof of the Main Theorem (groups of the class M)........................................ 4211. Proof of tho Main Theorem (reduced groups).................................................. 4712. Proof of the Main Theorem (conclusion)........................................................... 48References.................................................................................................................... 57

How to cite

top

A. Hulanicki. Compact Abelian groups and extensions of Haar measures. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1964. <http://eudml.org/doc/268552>.

@book{A1964,
abstract = {ContentsIntroduction.................................................................................................................... 31. Preliminaries (topology measure).................................................................... 32. Problems and the theorem.................................................................................... 73. Preliminaries (abstract groups, Cartesian products)....................................... 94. Preliminaries (automorphisms, duality theory).................................................. 135. Compact groups....................................................................................................... 156. Theorems on the groups $D_p$........................................................................... 187. A decomposition of compact groups.................................................................... 278. Groups in which all compact topologies are isomorphic................................ 339. The class M............................................................................................................... 4010. Proof of the Main Theorem (groups of the class M)........................................ 4211. Proof of tho Main Theorem (reduced groups).................................................. 4712. Proof of the Main Theorem (conclusion)........................................................... 48References.................................................................................................................... 57},
author = {A. Hulanicki},
keywords = {compact abelian groups; extensions of Haar measures},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Compact Abelian groups and extensions of Haar measures},
url = {http://eudml.org/doc/268552},
year = {1964},
}

TY - BOOK
AU - A. Hulanicki
TI - Compact Abelian groups and extensions of Haar measures
PY - 1964
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - ContentsIntroduction.................................................................................................................... 31. Preliminaries (topology measure).................................................................... 32. Problems and the theorem.................................................................................... 73. Preliminaries (abstract groups, Cartesian products)....................................... 94. Preliminaries (automorphisms, duality theory).................................................. 135. Compact groups....................................................................................................... 156. Theorems on the groups $D_p$........................................................................... 187. A decomposition of compact groups.................................................................... 278. Groups in which all compact topologies are isomorphic................................ 339. The class M............................................................................................................... 4010. Proof of the Main Theorem (groups of the class M)........................................ 4211. Proof of tho Main Theorem (reduced groups).................................................. 4712. Proof of the Main Theorem (conclusion)........................................................... 48References.................................................................................................................... 57
LA - eng
KW - compact abelian groups; extensions of Haar measures
UR - http://eudml.org/doc/268552
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.