A characterisation of the circle group.
We show that every compact connected group is the limit of a continuous inverse sequence, in the category of compact groups, where each successor bonding map is either an epimorphism with finite kernel or the projection from a product by a simple compact Lie group. As an application, we present a proof of an unpublished result of Charles Mills from 1978: every compact group is supercompact.
We study a method of approximating representations of the group by those of the group . As a consequence we establish a version of a theorem of DeLeeuw for Fourier multipliers of that applies to the “restrictions” of a function on the dual of to the dual of .
We generalize the classical F. and M. Riesz theorem to metrizable compact groups whose center contains a copy of the circle group. Important examples of such groups are the isotropy groups of the bounded symmetric domains.The proof uses a criterion for absolute continuity involving spaces with : A measure on a compact metrisable group is absolutely continuous with respect to Haar measure on if for some a certain subspace of which is related to has sufficiently many continuous linear...