Some functional differential equations

A. Pelczar

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1973

Abstract

top
CONTENTSIntroduction............................................................................................................................................................................... 5Chapter 0. PRELIMINARIES0.1. (Preliminary remarks and notation)............................................................................................................................. 90.2. (Notation — continuation).............................................................................................................................................. 100.3. (Notation and some definitions).................................................................................................................................. 100.4. (Statement of problems; definition of solutions of differential functional equations)......................................... 120.5. (Equivalence of problems: differential and integral; definition of solutions of integral equations).................. 14Chapter I. EXISTENCE AND UNIQUENESS OF SOLUTIONS AND THE CONVERGENCE OF SUCCESSIVEAPPROXIMATIONS IN COMPACT SETS1.1. Notation and definitions................................................................................................................................................. 171.2. Uniqueness...................................................................................................................................................................... 181.3. Existence and successive approximations................................................................................................................ 191.4. Existence without uniqueness...................................................................................................................................... 221.5. Some generalizations of the results from 1.2-1.4..................................................................................................... 231.6. Some supplementary remarks..................................................................................................................................... 24Chapter II. LOCAL AND GLOBAL EXISTENCE AND UNIQUENESS2.1. Notation and definitions................................................................................................................................................. 272.2. Union of solutions........................................................................................................................................................... 282.3. Global uniqueness.......................................................................................................................................................... 292.4. Definition of the condition (W) and some remarks................................................................................................... 312.6. Local existence of solutions.......................................................................................................................................... 322.6. Lemmas............................................................................................................................................................................ 332.7. Limits of solutions on the boundary............................................................................................................................. 362.8. Prolongations................................................................................................................................................................... 382.9. Global existence under the assumptions on uniqueness...................................................................................... 392.10. Global existence without uniqueness....................................................................................................................... 412.11. Global existence without uniqueness by the method of A. Bielecki, T. Dłotko and M. Kuczma...................... 432.12. Existence of solutions under the assumptions (Y) and (Ỹ)................................................................................... 462.13. Local convergence of successive approximations under the assumptions (V)............................................... 472.14. Remarks on some generalizations........................................................................................................................... 49Chapter III. CONTINUOUS DEPENDENCE OF SOLUTIONS ON GIVEN FUNCTIONS3.1. Continuous dependence on λ , ψ , φ a ............................................ 513.2. Continuous dependence on ƒ....................................................... 52

How to cite

top

A. Pelczar. Some functional differential equations. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1973. <http://eudml.org/doc/268553>.

@book{A1973,
abstract = {CONTENTSIntroduction............................................................................................................................................................................... 5Chapter 0. PRELIMINARIES0.1. (Preliminary remarks and notation)............................................................................................................................. 90.2. (Notation — continuation).............................................................................................................................................. 100.3. (Notation and some definitions).................................................................................................................................. 100.4. (Statement of problems; definition of solutions of differential functional equations)......................................... 120.5. (Equivalence of problems: differential and integral; definition of solutions of integral equations).................. 14Chapter I. EXISTENCE AND UNIQUENESS OF SOLUTIONS AND THE CONVERGENCE OF SUCCESSIVEAPPROXIMATIONS IN COMPACT SETS1.1. Notation and definitions................................................................................................................................................. 171.2. Uniqueness...................................................................................................................................................................... 181.3. Existence and successive approximations................................................................................................................ 191.4. Existence without uniqueness...................................................................................................................................... 221.5. Some generalizations of the results from 1.2-1.4..................................................................................................... 231.6. Some supplementary remarks..................................................................................................................................... 24Chapter II. LOCAL AND GLOBAL EXISTENCE AND UNIQUENESS2.1. Notation and definitions................................................................................................................................................. 272.2. Union of solutions........................................................................................................................................................... 282.3. Global uniqueness.......................................................................................................................................................... 292.4. Definition of the condition (W) and some remarks................................................................................................... 312.6. Local existence of solutions.......................................................................................................................................... 322.6. Lemmas............................................................................................................................................................................ 332.7. Limits of solutions on the boundary............................................................................................................................. 362.8. Prolongations................................................................................................................................................................... 382.9. Global existence under the assumptions on uniqueness...................................................................................... 392.10. Global existence without uniqueness....................................................................................................................... 412.11. Global existence without uniqueness by the method of A. Bielecki, T. Dłotko and M. Kuczma...................... 432.12. Existence of solutions under the assumptions (Y) and (Ỹ)................................................................................... 462.13. Local convergence of successive approximations under the assumptions (V)............................................... 472.14. Remarks on some generalizations........................................................................................................................... 49Chapter III. CONTINUOUS DEPENDENCE OF SOLUTIONS ON GIVEN FUNCTIONS3.1. Continuous dependence on $λ, ψ, \{φ^a\}$............................................ 513.2. Continuous dependence on ƒ....................................................... 52},
author = {A. Pelczar},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Some functional differential equations},
url = {http://eudml.org/doc/268553},
year = {1973},
}

TY - BOOK
AU - A. Pelczar
TI - Some functional differential equations
PY - 1973
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction............................................................................................................................................................................... 5Chapter 0. PRELIMINARIES0.1. (Preliminary remarks and notation)............................................................................................................................. 90.2. (Notation — continuation).............................................................................................................................................. 100.3. (Notation and some definitions).................................................................................................................................. 100.4. (Statement of problems; definition of solutions of differential functional equations)......................................... 120.5. (Equivalence of problems: differential and integral; definition of solutions of integral equations).................. 14Chapter I. EXISTENCE AND UNIQUENESS OF SOLUTIONS AND THE CONVERGENCE OF SUCCESSIVEAPPROXIMATIONS IN COMPACT SETS1.1. Notation and definitions................................................................................................................................................. 171.2. Uniqueness...................................................................................................................................................................... 181.3. Existence and successive approximations................................................................................................................ 191.4. Existence without uniqueness...................................................................................................................................... 221.5. Some generalizations of the results from 1.2-1.4..................................................................................................... 231.6. Some supplementary remarks..................................................................................................................................... 24Chapter II. LOCAL AND GLOBAL EXISTENCE AND UNIQUENESS2.1. Notation and definitions................................................................................................................................................. 272.2. Union of solutions........................................................................................................................................................... 282.3. Global uniqueness.......................................................................................................................................................... 292.4. Definition of the condition (W) and some remarks................................................................................................... 312.6. Local existence of solutions.......................................................................................................................................... 322.6. Lemmas............................................................................................................................................................................ 332.7. Limits of solutions on the boundary............................................................................................................................. 362.8. Prolongations................................................................................................................................................................... 382.9. Global existence under the assumptions on uniqueness...................................................................................... 392.10. Global existence without uniqueness....................................................................................................................... 412.11. Global existence without uniqueness by the method of A. Bielecki, T. Dłotko and M. Kuczma...................... 432.12. Existence of solutions under the assumptions (Y) and (Ỹ)................................................................................... 462.13. Local convergence of successive approximations under the assumptions (V)............................................... 472.14. Remarks on some generalizations........................................................................................................................... 49Chapter III. CONTINUOUS DEPENDENCE OF SOLUTIONS ON GIVEN FUNCTIONS3.1. Continuous dependence on $λ, ψ, {φ^a}$............................................ 513.2. Continuous dependence on ƒ....................................................... 52
LA - eng
UR - http://eudml.org/doc/268553
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.