The existence of Carathéodory solutions of hyperbolic functional differential equations

Adrian Karpowicz

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2010)

  • Volume: 30, Issue: 1, page 121-140
  • ISSN: 1509-9407

Abstract

top
We consider the following Darboux problem for the functional differential equation ² u / x y ( x , y ) = f ( x , y , u ( x , y ) , u / x ( x , y ) , u / y ( x , y ) ) a.e. in [0,a]×[0,b], u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b] 0 , a ] × ( 0 , b ] , where the function u ( x , y ) : [ - a , 0 ] × [ - b , 0 ] k is defined by u ( x , y ) ( s , t ) = u ( s + x , t + y ) for (s,t) ∈ [-a₀,0]×[-b₀,0]. We prove a theorem on existence of the Carathéodory solutions of the above problem.

How to cite

top

Adrian Karpowicz. "The existence of Carathéodory solutions of hyperbolic functional differential equations." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 30.1 (2010): 121-140. <http://eudml.org/doc/271181>.

@article{AdrianKarpowicz2010,
abstract = {We consider the following Darboux problem for the functional differential equation $∂²u/∂x∂y(x,y) = f(x,y,u_\{(x,y)\},∂u/∂x(x,y),∂u/∂y(x,y))$ a.e. in [0,a]×[0,b], u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b]$0,a]×(0,b], $where the function $u_\{(x,y)\}:[-a₀,0]×[-b₀,0] → ℝ^\{k\}$ is defined by $u_\{(x,y)\}(s,t) = u(s+x,t+y)$ for (s,t) ∈ [-a₀,0]×[-b₀,0]. We prove a theorem on existence of the Carathéodory solutions of the above problem.},
author = {Adrian Karpowicz},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {existence theorem; functional differential equation; hyperbolic equation; Darboux problem; solution in the sense of Carathéodory},
language = {eng},
number = {1},
pages = {121-140},
title = {The existence of Carathéodory solutions of hyperbolic functional differential equations},
url = {http://eudml.org/doc/271181},
volume = {30},
year = {2010},
}

TY - JOUR
AU - Adrian Karpowicz
TI - The existence of Carathéodory solutions of hyperbolic functional differential equations
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2010
VL - 30
IS - 1
SP - 121
EP - 140
AB - We consider the following Darboux problem for the functional differential equation $∂²u/∂x∂y(x,y) = f(x,y,u_{(x,y)},∂u/∂x(x,y),∂u/∂y(x,y))$ a.e. in [0,a]×[0,b], u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b]$0,a]×(0,b], $where the function $u_{(x,y)}:[-a₀,0]×[-b₀,0] → ℝ^{k}$ is defined by $u_{(x,y)}(s,t) = u(s+x,t+y)$ for (s,t) ∈ [-a₀,0]×[-b₀,0]. We prove a theorem on existence of the Carathéodory solutions of the above problem.
LA - eng
KW - existence theorem; functional differential equation; hyperbolic equation; Darboux problem; solution in the sense of Carathéodory
UR - http://eudml.org/doc/271181
ER -

References

top
  1. [1] A. Alexiewicz and W. Orlicz, Some remarks on the existence and uniqueness of solutions of the hyperbolic equation ∂²z/∂x∂y = f(x,y,z,∂z/∂x,∂z/∂y), Stud. Math. 15 (1956), 201-215. Zbl0070.09204
  2. [2] E. Berkson and T.A. Gillespie, Absolutely continuous functions of two variables and well-bounded operators, J. London Math. Soc. 30 (1984), 305-321. Zbl0537.47017
  3. [3] T. Człapiński, Hyperbolic functional differential equations, Gdańsk, 1999. 
  4. [4] M. Dawidowski, I. Kubiaczyk and B. Rzepecki, An existence theorem for the hyperbolic equation z x y = f ( x , y , z ) in Banach space, Demonstr. Math. 20 (1987), 489-493. Zbl0689.35095
  5. [5] M. Dawidowski and I. Kubiaczyk, On bounded solutions of hyperbolic differential inclusion in Banach space, Demonstr. Math. 25 (1992), 153-159. 
  6. [6] K. Deimling, A Carathéodory theory for systems of integral equations, Ann. Mat. Pura Appl. 86 (1970), 217-260. 
  7. [7] B. Palczewski and W. Pawelski, Some remarks on the uniqueness of solutions of the Darboux Problem with conditions of the Krasnoleski-Krein type, Ann. Pol. Math. 14 (1964), 97-100. Zbl0132.07208
  8. [8] A. Pelczar, Some functional differential equations, Diss. Math. 100 (1973), 3-74. 
  9. [9] R. Precup, Methods in Nonlinear Integral Equations, Kluwer Academic Publisher, cop. 2002. Zbl1060.65136
  10. [10] B. Rzepecki, On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach space, Rend. Semin. Mat.Univ. Padova 76 (1986), 201-206. Zbl0656.35087
  11. [11] J. Simon, Compact sets in the Space L p ( 0 , T ; B ) , Annali di Matematica Pura ed Applicate 146 (1986), 65-96. Zbl0629.46031
  12. [12] J. Straburzyński, The existence of solutions of some functional-differential equations of hyperbolic type, Demonstr. Math. 12 (1979), 105-121. Zbl0434.35062
  13. [13] J. Straburzyński, Existence of solutions of the Goursa problem for some functional-differential equations, Demonstr. Math. 15 (1982), 883-897. Zbl0536.35013
  14. [14] W. Walter, Ordinary functional differential equations and inequalities in the sense of Carathéodory, Appl. Anal. 70 (1998), 85-95. Zbl1031.34068
  15. [15] W. Walter, Differential and Integral Inequalities, Springer, 1970. doi:10.1007/978-3-642-86405-6 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.