On normalization of proofs in set theory

Lars Hallnäs

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1988

Abstract

top
CONTENTSIntroduction..............................................................................................................................................5I. Naive set theory.....................................................................................................................................61. The formal system................................................................................................................................62. Inversion and reduction properties of the rules of inference..............................................................123. Rules of contraction...........................................................................................................................174. Normalizability.....................................................................................................................................225. Counter-examples to normalizability in set theory...............................................................................246. C-normalizability.................................................................................................................................287. Concepts of normalizability and C-normalizability for naive set theory with intuitionistic logic.............33II. Well-founded fragments of naive set theory........................................................................................331. Basic definitions, properties of C-normal deductions..........................................................................332. Axioms for set theory..........................................................................................................................373. The language SET..............................................................................................................................504. Semantical motivation for the rules of contraction..............................................................................54III. C-normalizability of deductions in well-founded fragments of naive set theory...................................621. Well-foundedness predicates and well-foundedness objects.............................................................632. ϕ T ( x ̅ ) ( α ̅ ( t ̅ ) ) ..................................................................................................................................663. The substitution property....................................................................................................................844. Every deduction in N satisfies some negation closed W-predicate.....................................................875. C-normalizability for well-founded fragments of naive set theory with intuitionistic logic.....................926. Notes..................................................................................................................................................94References.............................................................................................................................................95Errata Page: 6₂ For: r,s Read: r,t Page: 75² For: ϕ x t ( x ̅ ) Read: ϕ x r ( x ̅ )

How to cite

top

Lars Hallnäs. On normalization of proofs in set theory. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1988. <http://eudml.org/doc/268566>.

@book{LarsHallnäs1988,
abstract = {CONTENTSIntroduction..............................................................................................................................................5I. Naive set theory.....................................................................................................................................61. The formal system................................................................................................................................62. Inversion and reduction properties of the rules of inference..............................................................123. Rules of contraction...........................................................................................................................174. Normalizability.....................................................................................................................................225. Counter-examples to normalizability in set theory...............................................................................246. C-normalizability.................................................................................................................................287. Concepts of normalizability and C-normalizability for naive set theory with intuitionistic logic.............33II. Well-founded fragments of naive set theory........................................................................................331. Basic definitions, properties of C-normal deductions..........................................................................332. Axioms for set theory..........................................................................................................................373. The language SET..............................................................................................................................504. Semantical motivation for the rules of contraction..............................................................................54III. C-normalizability of deductions in well-founded fragments of naive set theory...................................621. Well-foundedness predicates and well-foundedness objects.............................................................632. $ϕ_\{T(x̅)\}(α̅(t̅))$..................................................................................................................................663. The substitution property....................................................................................................................844. Every deduction in N satisfies some negation closed W-predicate.....................................................875. C-normalizability for well-founded fragments of naive set theory with intuitionistic logic.....................926. Notes..................................................................................................................................................94References.............................................................................................................................................95Errata Page: 6₂ For: r,s Read: r,t Page: 75² For: $ϕ_\{x∈t(x̅)\}$ Read: $ϕ_\{x∈r(x̅)\}$},
author = {Lars Hallnäs},
keywords = {naive set theory; partial normalization; Girard's method of computability predicates; intuitionistic systems; well-founded fragments; ZF; semiformal system SET describing the cumulative hierarchy; E-theorems},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {On normalization of proofs in set theory},
url = {http://eudml.org/doc/268566},
year = {1988},
}

TY - BOOK
AU - Lars Hallnäs
TI - On normalization of proofs in set theory
PY - 1988
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction..............................................................................................................................................5I. Naive set theory.....................................................................................................................................61. The formal system................................................................................................................................62. Inversion and reduction properties of the rules of inference..............................................................123. Rules of contraction...........................................................................................................................174. Normalizability.....................................................................................................................................225. Counter-examples to normalizability in set theory...............................................................................246. C-normalizability.................................................................................................................................287. Concepts of normalizability and C-normalizability for naive set theory with intuitionistic logic.............33II. Well-founded fragments of naive set theory........................................................................................331. Basic definitions, properties of C-normal deductions..........................................................................332. Axioms for set theory..........................................................................................................................373. The language SET..............................................................................................................................504. Semantical motivation for the rules of contraction..............................................................................54III. C-normalizability of deductions in well-founded fragments of naive set theory...................................621. Well-foundedness predicates and well-foundedness objects.............................................................632. $ϕ_{T(x̅)}(α̅(t̅))$..................................................................................................................................663. The substitution property....................................................................................................................844. Every deduction in N satisfies some negation closed W-predicate.....................................................875. C-normalizability for well-founded fragments of naive set theory with intuitionistic logic.....................926. Notes..................................................................................................................................................94References.............................................................................................................................................95Errata Page: 6₂ For: r,s Read: r,t Page: 75² For: $ϕ_{x∈t(x̅)}$ Read: $ϕ_{x∈r(x̅)}$
LA - eng
KW - naive set theory; partial normalization; Girard's method of computability predicates; intuitionistic systems; well-founded fragments; ZF; semiformal system SET describing the cumulative hierarchy; E-theorems
UR - http://eudml.org/doc/268566
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.