Displaying similar documents to “On normalization of proofs in set theory”

A Kalmár-style completeness proof for the logics of the hierarchy 𝕀 n k

Víctor Fernández (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The logics of the family 𝕀 n k := { I n P k } ( n , k ) ω 2 are formally defined by means of finite matrices, as a simultaneous generalization of the weakly-intuitionistic logic I 1 and of the paraconsistent logic P 1 . It is proved that this family can be naturally ordered, and it is shown a sound and complete axiomatics for each logic of the form I n P k . The involved completeness proof showed here is obtained by means of a generalization of the well-known Kalmár’s method, usually applied for many-valued logics.

Propositional extensions of L ω 1 ω

Richard Gostanian, Karel Hrbacek

Similarity:

CONTENTS0. Preliminaries....................................................................... 71. Adding propositional connectives to L ω 1 ω ............... 82. The propositional part of L ω 1 ω (S)............................. 103. The operation S and the Boolean algebra B S ............... 114. General model-theoretic properties of L ω 1 ω (S)...... 175. Hanf number computations...................................................... 226. Negative results for L ω 1 ω (S)...........................................

Completeness properties of classical theories of finite type and the normal form theorem

Peter Päppinghaus

Similarity:

CONTENTSIntroduction........................................................................................................................................................................................................................50. Terminology and preliminaries......................................................................................................................................................................................121. The extent of cut elimination by...

A topological duality for the F -chains associated with the logic C ω

Verónica Quiroga, Víctor Fernández (2017)

Mathematica Bohemica

Similarity:

In this paper we present a topological duality for a certain subclass of the F ω -structures defined by M. M. Fidel, which conform to a non-standard semantics for the paraconsistent N. C. A. da Costa logic C ω . Actually, the duality introduced here is focused on F ω -structures whose supports are chains. For our purposes, we characterize every F ω -chain by means of a new structure that we will call (DCC) here. This characterization will allow us to prove the dual equivalence between the category...

Uncountable cardinals have the same monadic ∀₁¹ positive theory over large sets

Athanassios Tzouvaras (2004)

Fundamenta Mathematicae

Similarity:

We show that uncountable cardinals are indistinguishable by sentences of the monadic second-order language of order of the form (∀X)ϕ(X) and (∃X)ϕ(X), for ϕ positive in X and containing no set-quantifiers, when the set variables range over large (= cofinal) subsets of the cardinals. This strengthens the result of Doner-Mostowski-Tarski [3] that (κ,∈), (λ,∈) are elementarily equivalent when κ, λ are uncountable. It follows that we can consistently postulate that the structures ( 2 κ , [ 2 κ ] > κ , < ) , ( 2 λ , [ 2 λ ] > λ , < ) are...

Characterizing the powerset by a complete (Scott) sentence

Ioannis Souldatos (2013)

Fundamenta Mathematicae

Similarity:

This paper is part II of a study on cardinals that are characterizable by a Scott sentence, continuing previous work of the author. A cardinal κ is characterized by a Scott sentence ϕ if ϕ has a model of size κ, but no model of size κ⁺. The main question in this paper is the following: Are the characterizable cardinals closed under the powerset operation? We prove that if β is characterized by a Scott sentence, then 2 β + β is (homogeneously) characterized by a Scott sentence, for all 0 <...

The n m -propositional calculus

Carlos Gallardo, Alicia Ziliani (2015)

Mathematica Bohemica

Similarity:

T. Almada and J. Vaz de Carvalho (2001) stated the problem to investigate if these Łukasiewicz algebras are algebras of some logic system. In this article an affirmative answer is given and the n m -propositional calculus, denoted by n m , is introduced in terms of the binary connectives (implication), (standard implication), (conjunction), (disjunction) and the unary ones f (negation) and D i , 1 i n - 1 (generalized Moisil operators). It is proved that n m belongs to the class of standard systems...

A generalization of a formalized theory of fields of sets on non-classical logics

Helena Rasiowa

Similarity:

Contents Introduction.................................................................................................................................................. 3 § 1. System 𝒮 of a propositional calculus...................................................................... 4 § 2. System 𝒮 * ..................................................................................................................... 5 § 3. 𝒮 * -algebras.....................................................................................................................

On sentences provable in impredicative extensions of theories

Zygmunt Ratajczyk

Similarity:

CONTENTS0. Introduction.......................................................................... 51. Preliminaries............................................................................... 72. Basic facts to be used in the sequel....................................... 113. Predicates OD(.,.) and CL(.,.).................................................... 174. Predicate Sels............................................................................. 185. Strong n 1 -collection...........................................................

On the T -conditionality of T -power based implications

Zuming Peng (2022)

Kybernetika

Similarity:

It is well known that, in forward inference in fuzzy logic, the generalized modus ponens is guaranteed by a functional inequality called the law of T -conditionality. In this paper, the T -conditionality for T -power based implications is deeply studied and the concise necessary and sufficient conditions for a power based implication I T being T -conditional are obtained. Moreover, the sufficient conditions under which a power based implication I T is T * -conditional are discussed, this discussions...

On ordinals accessible by infinitary languages

Saharon Shelah, Pauli Väisänen, Jouko Väänänen (2005)

Fundamenta Mathematicae

Similarity:

Let λ be an infinite cardinal number. The ordinal number δ(λ) is the least ordinal γ such that if ϕ is any sentence of L λ ω , with a unary predicate D and a binary predicate ≺, and ϕ has a model ℳ with D , a well-ordering of type ≥ γ, then ϕ has a model ℳ ’ where D ' , ' is non-well-ordered. One of the interesting properties of this number is that the Hanf number of L λ ω is exactly δ ( λ ) . It was proved in [BK71] that if ℵ₀ < λ < κ a r e r e g u l a r c a r d i n a l n u m b e r s , t h e n t h e r e i s a f o r c i n g e x t e n s i o n , p r e s e r v i n g c o f i n a l i t i e s , s u c h t h a t i n t h e e x t e n s i o n 2λ = κ a n d δ ( λ ) < λ . W e i m p r o v e t h i s r e s u l t b y p r o v i n g t h e f o l l o w i n g : S u p p o s e < λ < θ κ a r e c a r d i n a l n u m b e r s s u c h t h a t λ < λ = λ ; ∙ cf(θ) ≥ λ⁺ and μ λ < θ whenever μ < θ; ∙ κ λ = κ . Then there...