Three-valued logic and cut-elimination: The actual meaning of Takeuti's conjecture
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1976
Access Full Book
topAbstract
topHow to cite
topJ. Y. Girard. Three-valued logic and cut-elimination: The actual meaning of Takeuti's conjecture. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1976. <http://eudml.org/doc/268582>.
@book{J1976,
abstract = {CONTENTSIntroduction............................................................................................................ 5A. The three-valued predicate calculus............................................................ 8 A 1. Three-valued structures; classical case............................................. 8 A 2. Three-valued structures; intuitionistic case........................................ 10 A 3. Theories; models..................................................................................... 12 A 4. The completeness theorem.................................................................. 14 A 5. The thinness theorem............................................................................. 18B. Three-valued analysis and cut elimination......................................................... 19 B 1. The syntax................................................................................................. 19 B 2. The semantics......................................................................................... 22 B 3. Cut-free provability................................................................................... 23 B 4. Takeuti’s conjecture................................................................................ 28C. Applications to the metamathematics of cut-free analysis.............................. 30 C 1. Poor and absorbing formulas............................................................... 31 C 2. A candidate for synonymity.................................................................... 32 C 3. Syntactic conditions for poverty............................................................. 35 C 4. Takeuti’s conjectures and $∑^0_1$-reflection.................................. 36 C 5. Cut elimination in the classical case.................................................. 37 C 6. The poverty theorem............................................................................... 39Appendix......................................................................................................................... 41 1. Tait’s proof.................................................................................................... 41 2. Prawitz’s proof.............................................................................................. 42 3. Prawitz’s third proof..................................................................................... 43 4. The co-rule.................................................................................................... 43 5. The simple theory of types......................................................................... 44 References............................................................................................... 45},
author = {J. Y. Girard},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Three-valued logic and cut-elimination: The actual meaning of Takeuti's conjecture},
url = {http://eudml.org/doc/268582},
year = {1976},
}
TY - BOOK
AU - J. Y. Girard
TI - Three-valued logic and cut-elimination: The actual meaning of Takeuti's conjecture
PY - 1976
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction............................................................................................................ 5A. The three-valued predicate calculus............................................................ 8 A 1. Three-valued structures; classical case............................................. 8 A 2. Three-valued structures; intuitionistic case........................................ 10 A 3. Theories; models..................................................................................... 12 A 4. The completeness theorem.................................................................. 14 A 5. The thinness theorem............................................................................. 18B. Three-valued analysis and cut elimination......................................................... 19 B 1. The syntax................................................................................................. 19 B 2. The semantics......................................................................................... 22 B 3. Cut-free provability................................................................................... 23 B 4. Takeuti’s conjecture................................................................................ 28C. Applications to the metamathematics of cut-free analysis.............................. 30 C 1. Poor and absorbing formulas............................................................... 31 C 2. A candidate for synonymity.................................................................... 32 C 3. Syntactic conditions for poverty............................................................. 35 C 4. Takeuti’s conjectures and $∑^0_1$-reflection.................................. 36 C 5. Cut elimination in the classical case.................................................. 37 C 6. The poverty theorem............................................................................... 39Appendix......................................................................................................................... 41 1. Tait’s proof.................................................................................................... 41 2. Prawitz’s proof.............................................................................................. 42 3. Prawitz’s third proof..................................................................................... 43 4. The co-rule.................................................................................................... 43 5. The simple theory of types......................................................................... 44 References............................................................................................... 45
LA - eng
UR - http://eudml.org/doc/268582
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.