Three-valued logic and cut-elimination: The actual meaning of Takeuti's conjecture

J. Y. Girard

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1976

Abstract

top
CONTENTSIntroduction............................................................................................................ 5A. The three-valued predicate calculus............................................................ 8 A 1. Three-valued structures; classical case............................................. 8 A 2. Three-valued structures; intuitionistic case........................................ 10 A 3. Theories; models..................................................................................... 12 A 4. The completeness theorem.................................................................. 14 A 5. The thinness theorem............................................................................. 18B. Three-valued analysis and cut elimination......................................................... 19 B 1. The syntax................................................................................................. 19 B 2. The semantics......................................................................................... 22 B 3. Cut-free provability................................................................................... 23 B 4. Takeuti’s conjecture................................................................................ 28C. Applications to the metamathematics of cut-free analysis.............................. 30 C 1. Poor and absorbing formulas............................................................... 31 C 2. A candidate for synonymity.................................................................... 32 C 3. Syntactic conditions for poverty............................................................. 35 C 4. Takeuti’s conjectures and 1 0 -reflection.................................. 36 C 5. Cut elimination in the classical case.................................................. 37 C 6. The poverty theorem............................................................................... 39Appendix......................................................................................................................... 41 1. Tait’s proof.................................................................................................... 41 2. Prawitz’s proof.............................................................................................. 42 3. Prawitz’s third proof..................................................................................... 43 4. The co-rule.................................................................................................... 43 5. The simple theory of types......................................................................... 44 References............................................................................................... 45

How to cite

top

J. Y. Girard. Three-valued logic and cut-elimination: The actual meaning of Takeuti's conjecture. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1976. <http://eudml.org/doc/268582>.

@book{J1976,
abstract = {CONTENTSIntroduction............................................................................................................ 5A. The three-valued predicate calculus............................................................ 8 A 1. Three-valued structures; classical case............................................. 8 A 2. Three-valued structures; intuitionistic case........................................ 10 A 3. Theories; models..................................................................................... 12 A 4. The completeness theorem.................................................................. 14 A 5. The thinness theorem............................................................................. 18B. Three-valued analysis and cut elimination......................................................... 19 B 1. The syntax................................................................................................. 19 B 2. The semantics......................................................................................... 22 B 3. Cut-free provability................................................................................... 23 B 4. Takeuti’s conjecture................................................................................ 28C. Applications to the metamathematics of cut-free analysis.............................. 30 C 1. Poor and absorbing formulas............................................................... 31 C 2. A candidate for synonymity.................................................................... 32 C 3. Syntactic conditions for poverty............................................................. 35 C 4. Takeuti’s conjectures and $∑^0_1$-reflection.................................. 36 C 5. Cut elimination in the classical case.................................................. 37 C 6. The poverty theorem............................................................................... 39Appendix......................................................................................................................... 41 1. Tait’s proof.................................................................................................... 41 2. Prawitz’s proof.............................................................................................. 42 3. Prawitz’s third proof..................................................................................... 43 4. The co-rule.................................................................................................... 43 5. The simple theory of types......................................................................... 44 References............................................................................................... 45},
author = {J. Y. Girard},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Three-valued logic and cut-elimination: The actual meaning of Takeuti's conjecture},
url = {http://eudml.org/doc/268582},
year = {1976},
}

TY - BOOK
AU - J. Y. Girard
TI - Three-valued logic and cut-elimination: The actual meaning of Takeuti's conjecture
PY - 1976
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction............................................................................................................ 5A. The three-valued predicate calculus............................................................ 8 A 1. Three-valued structures; classical case............................................. 8 A 2. Three-valued structures; intuitionistic case........................................ 10 A 3. Theories; models..................................................................................... 12 A 4. The completeness theorem.................................................................. 14 A 5. The thinness theorem............................................................................. 18B. Three-valued analysis and cut elimination......................................................... 19 B 1. The syntax................................................................................................. 19 B 2. The semantics......................................................................................... 22 B 3. Cut-free provability................................................................................... 23 B 4. Takeuti’s conjecture................................................................................ 28C. Applications to the metamathematics of cut-free analysis.............................. 30 C 1. Poor and absorbing formulas............................................................... 31 C 2. A candidate for synonymity.................................................................... 32 C 3. Syntactic conditions for poverty............................................................. 35 C 4. Takeuti’s conjectures and $∑^0_1$-reflection.................................. 36 C 5. Cut elimination in the classical case.................................................. 37 C 6. The poverty theorem............................................................................... 39Appendix......................................................................................................................... 41 1. Tait’s proof.................................................................................................... 41 2. Prawitz’s proof.............................................................................................. 42 3. Prawitz’s third proof..................................................................................... 43 4. The co-rule.................................................................................................... 43 5. The simple theory of types......................................................................... 44 References............................................................................................... 45
LA - eng
UR - http://eudml.org/doc/268582
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.