Useful Four-Valued Extension of the Temporal Logic KtT4
Bulletin of the Section of Logic (2018)
- Volume: 47, Issue: 1
- ISSN: 0138-0680
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] N. D. Belnap, A useful four-valued logic, [in:] J. M. Dunn and G. Epstein (eds.), Modern uses of multiple-valued logic, Reidel Publishing Company, Dordrecht, 1977, pp. 8–37.
- [2] A. Bochman, Biconsequence relations: a four-valued formalism of reasoning with inconsistency and incompleteness, Notre Dame Journal of Formal Logic, Vol. 39, No. 1 (1998), pp. 47–73.
- [3] N. Bonnette and R. Goré, A labelled sequent system for tense logic Kt, [in:] G. Antoniou and J. Slaney (eds.), Advanced topics in artificial intelligence. 11th Australian joint conference on artificial intelligence, AI’98. Brisbane, Australia, July 13–17, 1998. Selected papers, Springer-Verlag, Berlin, 1998, pp. 71–82.
- [4] A. B. M. Brunner and W. A. Carnielli, Anti-intuitionism and paraconsistency, Journal of Applied Logic, Vol. 3, No. 1 (2005), pp. 161–184.
- [5] J. P. Burgess, Basic tense logic, [in:] D. Gabbay and F. Guenthner (eds.), Handbook of philosophical logic. Volume II. Extensions of classical logic, Reidel Publishing Company, Dordrecht, 1984, pp. 89–133.
- [6] V. Degauquier, Cuts, gluts and gaps, Logique et Analyse, Vol. 55, No. 218 (2012), pp. 229–240.
- [7] J. M. Dunn, Intuitive semantics for first-degree entailments and ‘coupled trees’, Philosophical Studies, Vol. 29, No. 3 (1976), pp. 149–168.
- [8] J. M. Dunn, Partiality and its dual, Studia Logica, Vol. 66, No. 1 (2000), pp. 5–40.
- [9] J. Y. Girard, Three-valued logic and cut-elimination: the actual meaning of Takeuti’s conjecture, Dissertationes Mathematicae (Rozprawy Matematyczne), Vol. 136 (1976), pp. 1–49.
- [10] K. Gödel, On the intuitionistic propositional calculus, [in:] S. Feferman (ed), Collected works. Volume I. Publications 1929–1936, Oxford University Press, New York, 1986, pp. 222–225.
- [11] R. Goré, Dual intuitionistic logic revisited, [in:] R. Dyckhoff (ed), Automated reasoning with analytic tableaux and related methods. International conference, TABLEAUX 2000. St Andrews, Scotland, UK, July 3–7, 2000. Proceedings, Springer-Verlag, Berlin, 2000, pp. 252–267.
- [12] P. Łukowski, Modal interpretation of Heyting-Brouwer logic, Bulletin of the Section of Logic, Vol. 25, No. 2 (1996), pp. 80–83.
- [13] R. Muskens, On partial and paraconsistent logics, Notre Dame Journal of Formal Logic, Vol. 40, No. 3 (1999), pp. 352–374.
- [14] S. Negri, Proof analysis in modal logic, Journal of Philosophical Logic, Vol. 34, No. 5/6 (2005), pp. 507–544.
- [15] G. Priest, Many-valued modal logics: a simple approach, The Review of Symbolic Logic, Vol. 1, No. 2 (2008), pp. 190–203.
- [16] C. Rauszer, An algebraic and Kripke-style approach to a certain extension of intuitionistic logic, Dissertationes Mathematicae (Rozprawy Matematyczne), Vol. 167 (1980), pp. 1–62.
- [17] N. Rescher and A. Urquhart, Temporal logic, Springer-Verlag, Wien, 1971.
- [18] G. Restall, Laws of non-contradiction, laws of the excluded middle, and logics, [in:] G. Priest, J. Beall and B. Armour-Garb (eds.), The law of non-contradiction. New philosophical essays, Clarendon Press, Oxford, 2004, pp. 73–84.