Spaces of D-paraanalytic elements

D. Przeworska-Rolewicz

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1990

Abstract

top
Let X be a linear space. Consider a linear equation(*) P(D)x = y, where y ∈ E ⊂ X,with a right invertible operator D ∈ L(X) and, in general, operator coefficients. The main purpose of this paper is to characterize those subspaces E ⊂ X for which all solutions of (*) belong to E (provided that they exist). This leads, even in the classical case of ordinary differential equations with scalar coefficients, to a new class of C -functions, which properly contains the classes of analytic functions of a real variable and of functions vanishing together with all derivatives at a point.CONTENTSIntroduction..............................................................................51. Preliminaries........................................................................52. Spaces of smooth elements.................................................83. Spaces of D-analytic elements...........................................214. Spaces of D-paraanalytic elements....................................325. Characterization of .D-paraanalytic elements by means of property (c) and canonical mappings.............396. D-R paraanalytic functions .................................................477. Smooth elements in Leibniz D-algebras..............................598. Weak E-solutions................................................................639. Linear systems with scalar coefficients...............................7910. Linear boundary value problems .....................................82References.............................................................................971985 Mathematics Subject Classification: 47B99, 47E05, 26E20

How to cite

top

D. Przeworska-Rolewicz. Spaces of D-paraanalytic elements. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1990. <http://eudml.org/doc/268585>.

@book{D1990,
abstract = {Let X be a linear space. Consider a linear equation(*) P(D)x = y, where y ∈ E ⊂ X,with a right invertible operator D ∈ L(X) and, in general, operator coefficients. The main purpose of this paper is to characterize those subspaces E ⊂ X for which all solutions of (*) belong to E (provided that they exist). This leads, even in the classical case of ordinary differential equations with scalar coefficients, to a new class of $C^∞$-functions, which properly contains the classes of analytic functions of a real variable and of functions vanishing together with all derivatives at a point.CONTENTSIntroduction..............................................................................51. Preliminaries........................................................................52. Spaces of smooth elements.................................................83. Spaces of D-analytic elements...........................................214. Spaces of D-paraanalytic elements....................................325. Characterization of .D-paraanalytic elements by means of property (c) and canonical mappings.............396. D-R paraanalytic functions .................................................477. Smooth elements in Leibniz D-algebras..............................598. Weak E-solutions................................................................639. Linear systems with scalar coefficients...............................7910. Linear boundary value problems .....................................82References.............................................................................971985 Mathematics Subject Classification: 47B99, 47E05, 26E20},
author = {D. Przeworska-Rolewicz},
keywords = {right invertible operator; D-paraanalytic element; paraanalytic function; D-analytic element; analytic function; D-R-invariant; R-perfect; D-paraanalyticity; weak E-solvability; boundary value problems},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Spaces of D-paraanalytic elements},
url = {http://eudml.org/doc/268585},
year = {1990},
}

TY - BOOK
AU - D. Przeworska-Rolewicz
TI - Spaces of D-paraanalytic elements
PY - 1990
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - Let X be a linear space. Consider a linear equation(*) P(D)x = y, where y ∈ E ⊂ X,with a right invertible operator D ∈ L(X) and, in general, operator coefficients. The main purpose of this paper is to characterize those subspaces E ⊂ X for which all solutions of (*) belong to E (provided that they exist). This leads, even in the classical case of ordinary differential equations with scalar coefficients, to a new class of $C^∞$-functions, which properly contains the classes of analytic functions of a real variable and of functions vanishing together with all derivatives at a point.CONTENTSIntroduction..............................................................................51. Preliminaries........................................................................52. Spaces of smooth elements.................................................83. Spaces of D-analytic elements...........................................214. Spaces of D-paraanalytic elements....................................325. Characterization of .D-paraanalytic elements by means of property (c) and canonical mappings.............396. D-R paraanalytic functions .................................................477. Smooth elements in Leibniz D-algebras..............................598. Weak E-solutions................................................................639. Linear systems with scalar coefficients...............................7910. Linear boundary value problems .....................................82References.............................................................................971985 Mathematics Subject Classification: 47B99, 47E05, 26E20
LA - eng
KW - right invertible operator; D-paraanalytic element; paraanalytic function; D-analytic element; analytic function; D-R-invariant; R-perfect; D-paraanalyticity; weak E-solvability; boundary value problems
UR - http://eudml.org/doc/268585
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.