On concrete categories

Antoni Wiweger

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1976

Abstract

top
CONTENTSIntroduction............................................................................................................ 5Chapter I. PRELIMINARIES1. Notation. Categories and functors................................................................ 82. Concrete categories................................................................................................ 123. Power functors. Set-theoretical lemmas............................................................. 164. The category of equivalence relations................................................................. 195. Pseudo-reflections and reflections...................................................................... 206. Universal points. Generators and cogenerators................................................ 21Chapter II. DUALITY. GENERALIZED EMBEDDINGS AND QUOTIENTS7. Dual notions in concrete categories........................................................... 238. D-preorders and C-preorders............................................................................... 279. Generalized images, coimages, embeddings and quotients........................ 33Chapter III. THE CONDITIONS OF TRANSFER AND OF UNICITY10. Definitions, examples, and basic properties.......................................... 3811. The "transfer" functor ........................................................................................... 4212. The "unicity" functor............................................................................................... 4413. The "unique transfer" functor............................................................................... 4614. Structures and concrete categories................................................................... 48Chapter IV. THE CATEGORY OF LOGICAL KITS15. Definitions and basic properties................................................................ 5116. Adjoints of some forgetful functors.................................................................... 5517. Coproducts of logical kits.................................................................................... 5818. Coequalizers in the category of logical kits...................................................... 61References .......................................................................................................... 64

How to cite

top

Antoni Wiweger. On concrete categories. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1976. <http://eudml.org/doc/268591>.

@book{AntoniWiweger1976,
abstract = {CONTENTSIntroduction............................................................................................................ 5Chapter I. PRELIMINARIES1. Notation. Categories and functors................................................................ 82. Concrete categories................................................................................................ 123. Power functors. Set-theoretical lemmas............................................................. 164. The category of equivalence relations................................................................. 195. Pseudo-reflections and reflections...................................................................... 206. Universal points. Generators and cogenerators................................................ 21Chapter II. DUALITY. GENERALIZED EMBEDDINGS AND QUOTIENTS7. Dual notions in concrete categories........................................................... 238. D-preorders and C-preorders............................................................................... 279. Generalized images, coimages, embeddings and quotients........................ 33Chapter III. THE CONDITIONS OF TRANSFER AND OF UNICITY10. Definitions, examples, and basic properties.......................................... 3811. The "transfer" functor ........................................................................................... 4212. The "unicity" functor............................................................................................... 4413. The "unique transfer" functor............................................................................... 4614. Structures and concrete categories................................................................... 48Chapter IV. THE CATEGORY OF LOGICAL KITS15. Definitions and basic properties................................................................ 5116. Adjoints of some forgetful functors.................................................................... 5517. Coproducts of logical kits.................................................................................... 5818. Coequalizers in the category of logical kits...................................................... 61References .......................................................................................................... 64},
author = {Antoni Wiweger},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {On concrete categories},
url = {http://eudml.org/doc/268591},
year = {1976},
}

TY - BOOK
AU - Antoni Wiweger
TI - On concrete categories
PY - 1976
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction............................................................................................................ 5Chapter I. PRELIMINARIES1. Notation. Categories and functors................................................................ 82. Concrete categories................................................................................................ 123. Power functors. Set-theoretical lemmas............................................................. 164. The category of equivalence relations................................................................. 195. Pseudo-reflections and reflections...................................................................... 206. Universal points. Generators and cogenerators................................................ 21Chapter II. DUALITY. GENERALIZED EMBEDDINGS AND QUOTIENTS7. Dual notions in concrete categories........................................................... 238. D-preorders and C-preorders............................................................................... 279. Generalized images, coimages, embeddings and quotients........................ 33Chapter III. THE CONDITIONS OF TRANSFER AND OF UNICITY10. Definitions, examples, and basic properties.......................................... 3811. The "transfer" functor ........................................................................................... 4212. The "unicity" functor............................................................................................... 4413. The "unique transfer" functor............................................................................... 4614. Structures and concrete categories................................................................... 48Chapter IV. THE CATEGORY OF LOGICAL KITS15. Definitions and basic properties................................................................ 5116. Adjoints of some forgetful functors.................................................................... 5517. Coproducts of logical kits.................................................................................... 5818. Coequalizers in the category of logical kits...................................................... 61References .......................................................................................................... 64
LA - eng
UR - http://eudml.org/doc/268591
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.