Algebraic and analytic properties of solutions of abstract differential equations

R. Bittner

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1964

Abstract

top
CONTENTSINTRODUCTION............................................................................................................................... 3Chapter I. ALGEBRAIC PROPERTIES OF SOLUTIONS OF ABSTRACT DIFFERENTIALEQUATIONS§ 1. Ordinary abstract differential equations1. Taylor’s formula for an abstract derivative.......................................................................... 42 π-solutions................................................................................................................................. 5§ 2. Fundamental system of solving operations in linear spaces and algebras1. Operational independence and solving operations.......................................................... 82. One linear differential equation of the first order................................................................. 93. A system of linear differential equations of the first order............................................... 114. Linear differential equations of order n.............................................................................. 155. Partial derivatives..................................................................................................................... 186. Linear partial differential equations...................................................................................... 207. Wroński’s fundamentality criteria in algebras................................................................. 248. Examples................................................................................................................................ 25§ 3. Universal spaces of analytic elements1. Introduction............................................................................................................................. 262. The space C N ( ) ........................................................................................................... 273. Multiplications, superposition and convolution of elementsof C N ( ) .................................................................................................................................. 294. The space C N m ( ) of analytic functions of many multipliers................................. 326. Examples.................................................................................................................................. 33Chapter II. ANALYTIC PROPERTIES OF SOLUTIONS OF ABSTRACT DIFFERENTIALEQUATIONS§ 4. Existence, uniqueness and continuity of solutions1. Regular operations in K Z -linear spaces....................................................................... 352. The well-defined problem of solution of an abstract differential equation.................... 373. Examples................................................................................................................................... 41§ 5. Analytic elements1. Introduction.............................................................................................................................. 43§ 6. The separation of variables1. The separation of variables.................................................................................................. 462. Examples................................................................................................................................. 49§ 7. Summation theorem1. The Kojima-Schur and the Toeplitz theorems................................................................. 522. Euler’s theorems..................................................................................................................... 643. Newton’s interpolation formulas........................................................................................ 554. Examples................................................................................................................................. 59REFERENCES............................................................................................................................ 61

How to cite

top

R. Bittner. Algebraic and analytic properties of solutions of abstract differential equations. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1964. <http://eudml.org/doc/268604>.

@book{R1964,
abstract = {CONTENTSINTRODUCTION............................................................................................................................... 3Chapter I. ALGEBRAIC PROPERTIES OF SOLUTIONS OF ABSTRACT DIFFERENTIALEQUATIONS§ 1. Ordinary abstract differential equations1. Taylor’s formula for an abstract derivative.......................................................................... 42 π-solutions................................................................................................................................. 5§ 2. Fundamental system of solving operations in linear spaces and algebras1. Operational independence and solving operations.......................................................... 82. One linear differential equation of the first order................................................................. 93. A system of linear differential equations of the first order............................................... 114. Linear differential equations of order n.............................................................................. 155. Partial derivatives..................................................................................................................... 186. Linear partial differential equations...................................................................................... 207. Wroński’s fundamentality criteria in algebras................................................................. 248. Examples................................................................................................................................ 25§ 3. Universal spaces of analytic elements1. Introduction............................................................................................................................. 262. The space $C_N(ℬ)$........................................................................................................... 273. Multiplications, superposition and convolution of elementsof $C_N(ℬ)$.................................................................................................................................. 294. The space $C_N^m(ℬ)$ of analytic functions of many multipliers................................. 326. Examples.................................................................................................................................. 33Chapter II. ANALYTIC PROPERTIES OF SOLUTIONS OF ABSTRACT DIFFERENTIALEQUATIONS§ 4. Existence, uniqueness and continuity of solutions1. Regular operations in $K_Z$-linear spaces....................................................................... 352. The well-defined problem of solution of an abstract differential equation.................... 373. Examples................................................................................................................................... 41§ 5. Analytic elements1. Introduction.............................................................................................................................. 43§ 6. The separation of variables1. The separation of variables.................................................................................................. 462. Examples................................................................................................................................. 49§ 7. Summation theorem1. The Kojima-Schur and the Toeplitz theorems................................................................. 522. Euler’s theorems..................................................................................................................... 643. Newton’s interpolation formulas........................................................................................ 554. Examples................................................................................................................................. 59REFERENCES............................................................................................................................ 61},
author = {R. Bittner},
keywords = {functional analysis},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Algebraic and analytic properties of solutions of abstract differential equations},
url = {http://eudml.org/doc/268604},
year = {1964},
}

TY - BOOK
AU - R. Bittner
TI - Algebraic and analytic properties of solutions of abstract differential equations
PY - 1964
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSINTRODUCTION............................................................................................................................... 3Chapter I. ALGEBRAIC PROPERTIES OF SOLUTIONS OF ABSTRACT DIFFERENTIALEQUATIONS§ 1. Ordinary abstract differential equations1. Taylor’s formula for an abstract derivative.......................................................................... 42 π-solutions................................................................................................................................. 5§ 2. Fundamental system of solving operations in linear spaces and algebras1. Operational independence and solving operations.......................................................... 82. One linear differential equation of the first order................................................................. 93. A system of linear differential equations of the first order............................................... 114. Linear differential equations of order n.............................................................................. 155. Partial derivatives..................................................................................................................... 186. Linear partial differential equations...................................................................................... 207. Wroński’s fundamentality criteria in algebras................................................................. 248. Examples................................................................................................................................ 25§ 3. Universal spaces of analytic elements1. Introduction............................................................................................................................. 262. The space $C_N(ℬ)$........................................................................................................... 273. Multiplications, superposition and convolution of elementsof $C_N(ℬ)$.................................................................................................................................. 294. The space $C_N^m(ℬ)$ of analytic functions of many multipliers................................. 326. Examples.................................................................................................................................. 33Chapter II. ANALYTIC PROPERTIES OF SOLUTIONS OF ABSTRACT DIFFERENTIALEQUATIONS§ 4. Existence, uniqueness and continuity of solutions1. Regular operations in $K_Z$-linear spaces....................................................................... 352. The well-defined problem of solution of an abstract differential equation.................... 373. Examples................................................................................................................................... 41§ 5. Analytic elements1. Introduction.............................................................................................................................. 43§ 6. The separation of variables1. The separation of variables.................................................................................................. 462. Examples................................................................................................................................. 49§ 7. Summation theorem1. The Kojima-Schur and the Toeplitz theorems................................................................. 522. Euler’s theorems..................................................................................................................... 643. Newton’s interpolation formulas........................................................................................ 554. Examples................................................................................................................................. 59REFERENCES............................................................................................................................ 61
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/268604
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.