Weighted H p spaces

José García-Cuerva

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1979

Abstract

top
CONTENTSIntroduction.......................................................................................................................................................... 5Chapter I. Some preliminary lemmas............................................................................................................ 8Chapter II. Weighted H p spaces of analytic functions.......................................................................... 13 1. Behaviour at the boundary....................................................................................................................... 13 2. Maximal function characterization........................................................................................................... 15 3. Atomic decomposition.............................................................................................................................. 20 4. Dual spaces............................................................................................................................................... 27Chapter III. H p spaces associated with the space of homogeneous type (R, w(x)dx).................... 31 1. The space 1 ( w ( x ) d x ) ...................................................................................................... 31 2. The spaces p ( w ( x ) d x ) for p < 1.................................................................................... 33Chapter IV. Applications and examples.......................................................................................................... 40 1. A weighted Hilbert transform.................................................................................................................... 40 2. Equivalence between the space of radial functions in H 1 ( R n ) and the space of even functions in 1 ( | r | n - 1 d r ) ..................................................................................... 40 3. Integral operators in the line obtained by restricting to radial functions some systems of Riesz transforms in higher dimensions................................................................................................. 44 4. The kernel z - 2 ...................................................................................................................................... 54References............................................................................................................................................................. 58

How to cite

top

José García-Cuerva. Weighted $H^p$ spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1979. <http://eudml.org/doc/268606>.

@book{JoséGarcía1979,
abstract = {CONTENTSIntroduction.......................................................................................................................................................... 5Chapter I. Some preliminary lemmas............................................................................................................ 8Chapter II. Weighted $H^p$ spaces of analytic functions.......................................................................... 13 1. Behaviour at the boundary....................................................................................................................... 13 2. Maximal function characterization........................................................................................................... 15 3. Atomic decomposition.............................................................................................................................. 20 4. Dual spaces............................................................................................................................................... 27Chapter III. $H^p$ spaces associated with the space of homogeneous type (R, w(x)dx).................... 31 1. The space $\mathfrak \{H\}^1(w(x)dx)$...................................................................................................... 31 2. The spaces $\mathfrak \{H\}^p(w(x)dx)$ for p < 1.................................................................................... 33Chapter IV. Applications and examples.......................................................................................................... 40 1. A weighted Hilbert transform.................................................................................................................... 40 2. Equivalence between the space of radial functions in $H^1(R^n)$ and the space of even functions in $\mathfrak \{H\}^1(|r|^\{n-1\}dr)$..................................................................................... 40 3. Integral operators in the line obtained by restricting to radial functions some systems of Riesz transforms in higher dimensions................................................................................................. 44 4. The kernel $z^\{-2\}$...................................................................................................................................... 54References............................................................................................................................................................. 58},
author = {José García-Cuerva},
keywords = {maximal function; building blocks; homogeneous space},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Weighted $H^p$ spaces},
url = {http://eudml.org/doc/268606},
year = {1979},
}

TY - BOOK
AU - José García-Cuerva
TI - Weighted $H^p$ spaces
PY - 1979
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction.......................................................................................................................................................... 5Chapter I. Some preliminary lemmas............................................................................................................ 8Chapter II. Weighted $H^p$ spaces of analytic functions.......................................................................... 13 1. Behaviour at the boundary....................................................................................................................... 13 2. Maximal function characterization........................................................................................................... 15 3. Atomic decomposition.............................................................................................................................. 20 4. Dual spaces............................................................................................................................................... 27Chapter III. $H^p$ spaces associated with the space of homogeneous type (R, w(x)dx).................... 31 1. The space $\mathfrak {H}^1(w(x)dx)$...................................................................................................... 31 2. The spaces $\mathfrak {H}^p(w(x)dx)$ for p < 1.................................................................................... 33Chapter IV. Applications and examples.......................................................................................................... 40 1. A weighted Hilbert transform.................................................................................................................... 40 2. Equivalence between the space of radial functions in $H^1(R^n)$ and the space of even functions in $\mathfrak {H}^1(|r|^{n-1}dr)$..................................................................................... 40 3. Integral operators in the line obtained by restricting to radial functions some systems of Riesz transforms in higher dimensions................................................................................................. 44 4. The kernel $z^{-2}$...................................................................................................................................... 54References............................................................................................................................................................. 58
LA - eng
KW - maximal function; building blocks; homogeneous space
UR - http://eudml.org/doc/268606
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.