Embedding S(X) into S(Y)
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1974
Access Full Book
topAbstract
topHow to cite
topK. D. Magill, Jr., and S. Subbiah. Embedding S(X) into S(Y). Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1974. <http://eudml.org/doc/268627>.
@book{K1974,
abstract = {CONTENTSIntroduction............................................................................................................................................................................. 5Some relevant history.................................................................................................................................................. 6Chapter 1 1. Left zero subsemigroupe of topological semigroups..................................................................... 8 2. Left zero subsemigroups of S(Z)......................................................................................................... 11 3. Some natural homomorphisms.......................................................................................................... 14 4. Embedding S (X) into a full transformation semigroup.......................................................... 18Chapter 2 1. A theorem on T-embeddings............................................................................................................... 25 2. Some results on algebraic embeddings........................................................................................... 27 3. Embeddings which are induced by an idempotent and a homeomorphism............................... 33 4. Entire isomorphisms............................................................................................................................... 37References............................................................................................................................................................................... 42},
author = {K. D. Magill, Jr., S. Subbiah},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Embedding S(X) into S(Y)},
url = {http://eudml.org/doc/268627},
year = {1974},
}
TY - BOOK
AU - K. D. Magill, Jr.
AU - S. Subbiah
TI - Embedding S(X) into S(Y)
PY - 1974
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction............................................................................................................................................................................. 5Some relevant history.................................................................................................................................................. 6Chapter 1 1. Left zero subsemigroupe of topological semigroups..................................................................... 8 2. Left zero subsemigroups of S(Z)......................................................................................................... 11 3. Some natural homomorphisms.......................................................................................................... 14 4. Embedding S (X) into a full transformation semigroup.......................................................... 18Chapter 2 1. A theorem on T-embeddings............................................................................................................... 25 2. Some results on algebraic embeddings........................................................................................... 27 3. Embeddings which are induced by an idempotent and a homeomorphism............................... 33 4. Entire isomorphisms............................................................................................................................... 37References............................................................................................................................................................................... 42
LA - eng
UR - http://eudml.org/doc/268627
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.