Structural properties of ideals
J. E. Baumgartner; A. D. Taylor; S. Wagon
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1982
Access Full Book
topAbstract
topHow to cite
topJ. E. Baumgartner, A. D. Taylor, and S. Wagon. Structural properties of ideals. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1982. <http://eudml.org/doc/268635>.
@book{J1982,
abstract = {CONTENTSPreface.............................................................................................. 5Chapter I. Preliminaries................................................................. 61. Notation and terminology.......................................................... 62. Results from the literature......................................................... 93. Definitions and basic properties.............................................. 11Chapter II. Subnormality and coherence.................................... 151. Subnormality................................................................................ 152. Solovay's theorem on normal saturated ideals.................... 183. Coherence with the non-stationary ideal................................ 204. Friendly ideals............................................................................. 225. The RK-ordering of ideals......................................................... 26Chapter III. Weak notions of selectivity........................................ 331. Local P-points.............................................................................. 342. Local Q-points............................................................................. 423. Saturated and precipitous ideals............................................. 474. The complete Boolean algebra induced by an ideal........... 525. Partition theorems...................................................................... 58Chapter IV. Strong notions of selectivity...................................... 651. P-points......................................................................................... 652. Ulam ideals and rigidity............................................................. 703. Q-points........................................................................................ 804. Selective ideals........................................................................... 85Appendix I.......................................................................................... 92References....................................................................................... 93},
author = {J. E. Baumgartner, A. D. Taylor, S. Wagon},
keywords = {regular cardinals; ideals; P-points; Q-points; Rudin-Keisler order; selectivity; saturation; precipitousness},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Structural properties of ideals},
url = {http://eudml.org/doc/268635},
year = {1982},
}
TY - BOOK
AU - J. E. Baumgartner
AU - A. D. Taylor
AU - S. Wagon
TI - Structural properties of ideals
PY - 1982
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSPreface.............................................................................................. 5Chapter I. Preliminaries................................................................. 61. Notation and terminology.......................................................... 62. Results from the literature......................................................... 93. Definitions and basic properties.............................................. 11Chapter II. Subnormality and coherence.................................... 151. Subnormality................................................................................ 152. Solovay's theorem on normal saturated ideals.................... 183. Coherence with the non-stationary ideal................................ 204. Friendly ideals............................................................................. 225. The RK-ordering of ideals......................................................... 26Chapter III. Weak notions of selectivity........................................ 331. Local P-points.............................................................................. 342. Local Q-points............................................................................. 423. Saturated and precipitous ideals............................................. 474. The complete Boolean algebra induced by an ideal........... 525. Partition theorems...................................................................... 58Chapter IV. Strong notions of selectivity...................................... 651. P-points......................................................................................... 652. Ulam ideals and rigidity............................................................. 703. Q-points........................................................................................ 804. Selective ideals........................................................................... 85Appendix I.......................................................................................... 92References....................................................................................... 93
LA - eng
KW - regular cardinals; ideals; P-points; Q-points; Rudin-Keisler order; selectivity; saturation; precipitousness
UR - http://eudml.org/doc/268635
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.