Structural properties of ideals

J. E. Baumgartner; A. D. Taylor; S. Wagon

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1982

Abstract

top
CONTENTSPreface.............................................................................................. 5Chapter I. Preliminaries................................................................. 61. Notation and terminology.......................................................... 62. Results from the literature......................................................... 93. Definitions and basic properties.............................................. 11Chapter II. Subnormality and coherence.................................... 151. Subnormality................................................................................ 152. Solovay's theorem on normal saturated ideals.................... 183. Coherence with the non-stationary ideal................................ 204. Friendly ideals............................................................................. 225. The RK-ordering of ideals......................................................... 26Chapter III. Weak notions of selectivity........................................ 331. Local P-points.............................................................................. 342. Local Q-points............................................................................. 423. Saturated and precipitous ideals............................................. 474. The complete Boolean algebra induced by an ideal........... 525. Partition theorems...................................................................... 58Chapter IV. Strong notions of selectivity...................................... 651. P-points......................................................................................... 652. Ulam ideals and rigidity............................................................. 703. Q-points........................................................................................ 804. Selective ideals........................................................................... 85Appendix I.......................................................................................... 92References....................................................................................... 93

How to cite

top

J. E. Baumgartner, A. D. Taylor, and S. Wagon. Structural properties of ideals. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1982. <http://eudml.org/doc/268635>.

@book{J1982,
abstract = {CONTENTSPreface.............................................................................................. 5Chapter I. Preliminaries................................................................. 61. Notation and terminology.......................................................... 62. Results from the literature......................................................... 93. Definitions and basic properties.............................................. 11Chapter II. Subnormality and coherence.................................... 151. Subnormality................................................................................ 152. Solovay's theorem on normal saturated ideals.................... 183. Coherence with the non-stationary ideal................................ 204. Friendly ideals............................................................................. 225. The RK-ordering of ideals......................................................... 26Chapter III. Weak notions of selectivity........................................ 331. Local P-points.............................................................................. 342. Local Q-points............................................................................. 423. Saturated and precipitous ideals............................................. 474. The complete Boolean algebra induced by an ideal........... 525. Partition theorems...................................................................... 58Chapter IV. Strong notions of selectivity...................................... 651. P-points......................................................................................... 652. Ulam ideals and rigidity............................................................. 703. Q-points........................................................................................ 804. Selective ideals........................................................................... 85Appendix I.......................................................................................... 92References....................................................................................... 93},
author = {J. E. Baumgartner, A. D. Taylor, S. Wagon},
keywords = {regular cardinals; ideals; P-points; Q-points; Rudin-Keisler order; selectivity; saturation; precipitousness},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Structural properties of ideals},
url = {http://eudml.org/doc/268635},
year = {1982},
}

TY - BOOK
AU - J. E. Baumgartner
AU - A. D. Taylor
AU - S. Wagon
TI - Structural properties of ideals
PY - 1982
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSPreface.............................................................................................. 5Chapter I. Preliminaries................................................................. 61. Notation and terminology.......................................................... 62. Results from the literature......................................................... 93. Definitions and basic properties.............................................. 11Chapter II. Subnormality and coherence.................................... 151. Subnormality................................................................................ 152. Solovay's theorem on normal saturated ideals.................... 183. Coherence with the non-stationary ideal................................ 204. Friendly ideals............................................................................. 225. The RK-ordering of ideals......................................................... 26Chapter III. Weak notions of selectivity........................................ 331. Local P-points.............................................................................. 342. Local Q-points............................................................................. 423. Saturated and precipitous ideals............................................. 474. The complete Boolean algebra induced by an ideal........... 525. Partition theorems...................................................................... 58Chapter IV. Strong notions of selectivity...................................... 651. P-points......................................................................................... 652. Ulam ideals and rigidity............................................................. 703. Q-points........................................................................................ 804. Selective ideals........................................................................... 85Appendix I.......................................................................................... 92References....................................................................................... 93
LA - eng
KW - regular cardinals; ideals; P-points; Q-points; Rudin-Keisler order; selectivity; saturation; precipitousness
UR - http://eudml.org/doc/268635
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.