Ideal version of Ramsey's theorem
Rafał Filipów; Nikodem Mrożek; Ireneusz Recław; Piotr Szuca
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 2, page 289-308
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFilipów, Rafał, et al. "Ideal version of Ramsey's theorem." Czechoslovak Mathematical Journal 61.2 (2011): 289-308. <http://eudml.org/doc/197028>.
@article{Filipów2011,
abstract = {We consider various forms of Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem which are connected with ideals of subsets of natural numbers. We characterize ideals with properties considered. We show that, in a sense, Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem characterize the same class of ideals. We use our results to show some versions of density Ramsey's theorem (these are similar to generalizations shown in [P. Frankl, R. L. Graham, and V. Rödl: Iterated combinatorial density theorems. J. Combin. Theory Ser. A 54 (1990), 95–111].},
author = {Filipów, Rafał, Mrożek, Nikodem, Recław, Ireneusz, Szuca, Piotr},
journal = {Czechoslovak Mathematical Journal},
keywords = {ideal of subsets of natural numbers; Bolzano-Weierstrass theorem; Bolzano-Weierstrass property; ideal convergence; statistical density; statistical convergence; subsequence; monotone sequence; Ramsey's theorem; ideal of subsets of natural numbers; Bolzano-Weierstrass theorem; Bolzano-Weierstrass property; ideal convergence; statistical density; statistical convergence; subsequence; monotone sequence; Ramsey's theorem},
language = {eng},
number = {2},
pages = {289-308},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ideal version of Ramsey's theorem},
url = {http://eudml.org/doc/197028},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Filipów, Rafał
AU - Mrożek, Nikodem
AU - Recław, Ireneusz
AU - Szuca, Piotr
TI - Ideal version of Ramsey's theorem
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 289
EP - 308
AB - We consider various forms of Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem which are connected with ideals of subsets of natural numbers. We characterize ideals with properties considered. We show that, in a sense, Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem characterize the same class of ideals. We use our results to show some versions of density Ramsey's theorem (these are similar to generalizations shown in [P. Frankl, R. L. Graham, and V. Rödl: Iterated combinatorial density theorems. J. Combin. Theory Ser. A 54 (1990), 95–111].
LA - eng
KW - ideal of subsets of natural numbers; Bolzano-Weierstrass theorem; Bolzano-Weierstrass property; ideal convergence; statistical density; statistical convergence; subsequence; monotone sequence; Ramsey's theorem; ideal of subsets of natural numbers; Bolzano-Weierstrass theorem; Bolzano-Weierstrass property; ideal convergence; statistical density; statistical convergence; subsequence; monotone sequence; Ramsey's theorem
UR - http://eudml.org/doc/197028
ER -
References
top- Alcántara, D. Meza, Ideals and filters on countable set, PhD thesis Universidad Nacional Autónoma de México (2009). (2009)
- Baumgartner, J. E., Taylor, A. D., Wagon, S., Structural Properties of Ideals, Diss. Math. 197 (1982). (1982) Zbl0549.03036MR0687276
- Booth, D., 10.1016/0003-4843(70)90005-7, Ann. Math. Logic 2 (1970), 1-24. (1970) Zbl0231.02067MR0277371DOI10.1016/0003-4843(70)90005-7
- Burkill, H., Mirsky, L., 10.1016/0022-247X(73)90214-X, J. Math. Anal. Appl. 41 (1973), 391-410. (1973) Zbl0268.26007MR0335714DOI10.1016/0022-247X(73)90214-X
- Farah, I., 10.1112/S0025579300014054, Mathematika 45 (1998), 79-103. (1998) Zbl0903.03029MR1644345DOI10.1112/S0025579300014054
- Farah, I., Analytic Quotients: Theory of Liftings for Quotients over Analytic Ideals on the Integers, Mem. Am. Math. Soc 702 (2000). (2000) Zbl0966.03045MR1711328
- Filipów, R., Mrożek, N., Recław, I., Szuca, P., 10.2178/jsl/1185803621, J. Symb. Log. 72 (2007), 501-512. (2007) MR2320288DOI10.2178/jsl/1185803621
- Filipów, R., Szuca, P., 10.1016/j.jcta.2009.12.005, J. Comb. Theory, Ser. A 117 (2010), 943-956. (2010) Zbl1230.05036MR2652104DOI10.1016/j.jcta.2009.12.005
- Frankl, P., Graham, R. L., Rödl, V., 10.1016/0097-3165(90)90008-K, J. Comb. Theory, Ser. A 54 (1990), 95-111. (1990) MR1051781DOI10.1016/0097-3165(90)90008-K
- Kojman, M., 10.1090/S0002-9939-01-06116-0, Proc. Am. Math. Soc. 130 (2002), 631-635. (2002) Zbl0979.54036MR1866012DOI10.1090/S0002-9939-01-06116-0
- Mazur, K., 10.4064/fm-138-2-103-111, Fundam. Math. 138 (1991), 103-111. (1991) MR1124539DOI10.4064/fm-138-2-103-111
- Samet, N., Tsaban, B., 10.1016/j.topol.2009.04.014, Topology Appl. 156 (2009), 2659-2669. (2009) Zbl1231.05272MR2561218DOI10.1016/j.topol.2009.04.014
- Shelah, S., 10.1007/BFb0096536, Springer Berlin (1982). (1982) MR0675955DOI10.1007/BFb0096536
- Solecki, S., 10.1016/S0168-0072(98)00051-7, Ann. Pure Appl. Logic 99 (1999), 51-72. (1999) Zbl0932.03060MR1708146DOI10.1016/S0168-0072(98)00051-7
- Todorcevic, S., 10.1007/BFb0096295, Lecture Notes in Mathematics, Vol. 1652 Springer Berlin (1997). (1997) Zbl0953.54001MR1442262DOI10.1007/BFb0096295
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.