Nets on a Riemannian manifold and finite-dimensional approximations of the Laplacian

Jacek Komorowski

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1979

Abstract

top
CONTENTSIntroduction......................................................................................................................................... 5Chapter I. Families of nets on a Riemannian manifold............................................................. 8 1. Family of canonical triangulations of R m ...................................................................... 8 2. Non-degeneracy in the case of nets defined by simplicial subdivisions...................... 9 3. Auxiliary lemmas....................................................................................................................... 13 4. Proofs of the auxiliary lemmas............................................................................................... 14 5. Nets defined by successive simplicial and standard geodesic subdivisions............. 18 6. Non-degeneracy in the case of nets defined by standard geodesic subdivisions...... 25Chapter II. Finite-dimensional approximation of the Laplacian................................................ 44 7. Difference forms on a net........................................................................................................ 44 8. Integration. The Stokes theorem........................................................................................... 48 9. Discrete Laplacians on a Riemannian net. The Hodge theorem................................... 52 10. Orientation and Hodge operators on a Riemannian net................................................ 54 11. Approximation of the operator d........................................................................................... 57 12. Approximation of the operator ∂ and the Laplacian......................................................... 64 13. Convergence of the approximations................................................................................... 70References......................................................................................................................................... 79

How to cite

top

Jacek Komorowski. Nets on a Riemannian manifold and finite-dimensional approximations of the Laplacian. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1979. <http://eudml.org/doc/268645>.

@book{JacekKomorowski1979,
abstract = {CONTENTSIntroduction......................................................................................................................................... 5Chapter I. Families of nets on a Riemannian manifold............................................................. 8 1. Family of canonical triangulations of $R^m$...................................................................... 8 2. Non-degeneracy in the case of nets defined by simplicial subdivisions...................... 9 3. Auxiliary lemmas....................................................................................................................... 13 4. Proofs of the auxiliary lemmas............................................................................................... 14 5. Nets defined by successive simplicial and standard geodesic subdivisions............. 18 6. Non-degeneracy in the case of nets defined by standard geodesic subdivisions...... 25Chapter II. Finite-dimensional approximation of the Laplacian................................................ 44 7. Difference forms on a net........................................................................................................ 44 8. Integration. The Stokes theorem........................................................................................... 48 9. Discrete Laplacians on a Riemannian net. The Hodge theorem................................... 52 10. Orientation and Hodge operators on a Riemannian net................................................ 54 11. Approximation of the operator d........................................................................................... 57 12. Approximation of the operator ∂ and the Laplacian......................................................... 64 13. Convergence of the approximations................................................................................... 70References......................................................................................................................................... 79},
author = {Jacek Komorowski},
keywords = {differential operators; Hodge theorem; harmonic forms; triangulation; Laplacian; approximation},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Nets on a Riemannian manifold and finite-dimensional approximations of the Laplacian},
url = {http://eudml.org/doc/268645},
year = {1979},
}

TY - BOOK
AU - Jacek Komorowski
TI - Nets on a Riemannian manifold and finite-dimensional approximations of the Laplacian
PY - 1979
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction......................................................................................................................................... 5Chapter I. Families of nets on a Riemannian manifold............................................................. 8 1. Family of canonical triangulations of $R^m$...................................................................... 8 2. Non-degeneracy in the case of nets defined by simplicial subdivisions...................... 9 3. Auxiliary lemmas....................................................................................................................... 13 4. Proofs of the auxiliary lemmas............................................................................................... 14 5. Nets defined by successive simplicial and standard geodesic subdivisions............. 18 6. Non-degeneracy in the case of nets defined by standard geodesic subdivisions...... 25Chapter II. Finite-dimensional approximation of the Laplacian................................................ 44 7. Difference forms on a net........................................................................................................ 44 8. Integration. The Stokes theorem........................................................................................... 48 9. Discrete Laplacians on a Riemannian net. The Hodge theorem................................... 52 10. Orientation and Hodge operators on a Riemannian net................................................ 54 11. Approximation of the operator d........................................................................................... 57 12. Approximation of the operator ∂ and the Laplacian......................................................... 64 13. Convergence of the approximations................................................................................... 70References......................................................................................................................................... 79
LA - eng
KW - differential operators; Hodge theorem; harmonic forms; triangulation; Laplacian; approximation
UR - http://eudml.org/doc/268645
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.