The number of minimum points of a positive quadratic form
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1971
Access Full Book
topAbstract
topHow to cite
topG. L. Watson. The number of minimum points of a positive quadratic form. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1971. <http://eudml.org/doc/268650>.
@book{G1971,
abstract = {CONTENTSIntroduction.......................................................................................61. Definition of certain special forms...........................................62. Statement of results...................................................................83. Proof of Theorem 2.....................................................................94. Preliminaries for Theorem 1.....................................................105. Further preliminaries for Theorem 1.......................................156. Construction for Theorem 1......................................................187. The case $B_4 ⊄ ƒ_n, C_5 ⊄ ƒ_n$ of Theorem 1..............218. The case $B_5 ⊄ ƒ_n$ of Theorem 1....................................249. Further construction for the case $B_5 ⊂ ƒ_n ≥ 7$............2610. The case $E_6 ⊄ ƒ_n$...........................................................3011. Preliminaries for the case $E_6 ⊂ ƒ_n$.............................3212. Proof of Theorem 1 for $E_8 ⊄ ƒ_n$ and for n ≥ 10.........3413. Completion of proof of Theorem 1........................................3814. Conclusion.................................................................................40References.......................................................................................42},
author = {G. L. Watson},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {The number of minimum points of a positive quadratic form},
url = {http://eudml.org/doc/268650},
year = {1971},
}
TY - BOOK
AU - G. L. Watson
TI - The number of minimum points of a positive quadratic form
PY - 1971
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction.......................................................................................61. Definition of certain special forms...........................................62. Statement of results...................................................................83. Proof of Theorem 2.....................................................................94. Preliminaries for Theorem 1.....................................................105. Further preliminaries for Theorem 1.......................................156. Construction for Theorem 1......................................................187. The case $B_4 ⊄ ƒ_n, C_5 ⊄ ƒ_n$ of Theorem 1..............218. The case $B_5 ⊄ ƒ_n$ of Theorem 1....................................249. Further construction for the case $B_5 ⊂ ƒ_n ≥ 7$............2610. The case $E_6 ⊄ ƒ_n$...........................................................3011. Preliminaries for the case $E_6 ⊂ ƒ_n$.............................3212. Proof of Theorem 1 for $E_8 ⊄ ƒ_n$ and for n ≥ 10.........3413. Completion of proof of Theorem 1........................................3814. Conclusion.................................................................................40References.......................................................................................42
LA - eng
UR - http://eudml.org/doc/268650
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.