Énumération complète des classes de formes parfaites en dimension 7
David-Olivier Jaquet-Chiffelle
Annales de l'institut Fourier (1993)
- Volume: 43, Issue: 1, page 21-55
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [Ba1]E.S. BARNES, Note on extreme forms, Can. J. Math., 7 (1955), 150-154. Zbl0065.03003MR16,1002e
- [Ba2]E.S. BARNES, The perfect and extreme senary forms, Can. J. Math., 9 (1957), 235-242. Zbl0078.03704MR19,251e
- [Ba3]E.S. BARNES, The complete enumeration of extreme senary forms, Phil. Trans. R. Soc. Lond., A, 249 (1957), 461-506. Zbl0077.26601MR19,251d
- [Ba4]E.S. BARNES, On a theorem of Voronoï, Proc. Camb. Phil. Soc., 53 (1957), 537-539. Zbl0078.03703MR19,120g
- [Ba5]E.S. BARNES, Criteria for extreme forms, J. Aust. Math. Soc., 1 (1959), 17-20. Zbl0109.03303MR21 #5622
- [BM1]A.-M. BERGÉ & J. MARTINET, Sur la constante d'Hermite (étude historique), Sém. de Th. des Nombres de Bordeaux 2, Exposé 8, pp. 8-01-8-15 (1985-1986). Zbl0623.10020MR89g:11032
- [BM2]A.-M. BERGÉ & J. MARTINET, Sur un problème de dualité lié aux sphères en géométrie des nombres, J. of Number Theory, Vol. 32, No. 1 (1989), 14-42. Zbl0677.10022MR90g:11088
- [Be1]M. BERGER, Géométrie 3 / convexes et polytopes, polyèdres réguliers, aires et volumes. Cedic, Fernand Nathan (publié avec le concours du C.N.R.S.) (1978). Zbl0423.51001
- [Bl1]H.F. BLICHFELDT, On the minimum value of positive real quadratic forms in 6 variables, Bull. Am. Math. Soc., 31, 386 (1925). JFM51.0157.01
- [Bl2]H.F. BLICHFELDT, The minimum value of quadratic forms, and the closest packing of spheres, Math. Annalen, 101 (1929), 605-608. Zbl55.0721.01JFM55.0721.01
- [Bl3]H.F. BLICHFELDT, The minimum values of quadratic forms in six, seven and eight variables, Math. Z., 39 (1935), 1-15. Zbl0009.24403JFM60.0924.04
- [CS1]J.H. CONWAY & N.J.A. SLOANE, Sphere-packings, lattices and groups. Grundlehren der mathematischen Wissenschaften 290, Springer-Verlag, 1988. Zbl0634.52002
- [CS2]J.H. CONWAY & N.J.A. SLOANE, Low-dimensional lattices. III. Perfect forms, Proc. R. Soc. Lond., A, 418 (1988), 43-80. Zbl0655.10022MR90a:11073
- [Co1]H.S.M. COXETER, Extreme forms, Can. J. Math., 3 (1851), 391-441. Zbl0044.04201
- [GS1]L. GUY & J.R. STEELE, Common LISP : The Language. Digital Press, 1984, 465 pages.
- [JS1]D.-O. JAQUET & F. SIGRIST, Formes quadratiques contiguës à D7, C. R. Acad. Sci. Paris, t. 309, Série I (1989), 641-644. Zbl0693.10025MR91h:11054
- [Ja1]D.-O. JAQUET, Domaines de Voronoï et algorithme de réduction des formes quadratiques définies positives. Sém. de Th. des Nombres de Bordeaux 2 (1990), 163-215. Zbl0715.11031MR91e:11072
- [Ja2]D.-O. JAQUET, Classification des réseaux dans R7 (via la notion de formes parfaites), Astérisque, Soc. Math. de France, 198-199-200 (1991), 177-185. Zbl0748.11032MR93g:11071
- [Kn1]M. KNESER, Two remarks on extreme forms, Can. J. Math., 7 (1955), 145-149. Zbl0065.03101MR16,1002d
- [KZ1]A. KORKINE & G. ZOLOTAREFF, Sur les formes quadratiques, Math. Annalen, 6 (1873), 336-389.
- [KZ2]A. KORKINE & G. ZOLOTAREFF, Sur les formes quadratiques positives, Math. Annalen, 11 (1877), 242-292. JFM09.0139.01
- [La1]J. LARMOUTH, The enumeration of perfect forms. Dans &”Computers in number theory&” (A. O. L. Atkin & B. J. Birch editors), pp. 237-239, New York, Academic Press 1971. Zbl0217.03201
- [Mo1]L.J. MORDELL, Observation on the minimum of a positive quadratic form in eight variables, J. Lond. Math. Soc., 19 (1944), 3-6. Zbl0060.12009MR6,57e
- [Oe1]J. OESTERLÉ, Empilements de sphères. Sém. N. Bourbaki 42, Exposé 727, Vol. 1989-90 (1990). Zbl0731.52005MR92g:11067
- [Sc1]P.R. SCOTT, On perfect and extreme forms. Thesis, Department of Mathematics, Univ. of Adelaide (1963).
- [Sc2]P.R. SCOTT, On perfect and extreme forms, J. Aust. Math. Soc., 4 (1964), 56-77. Zbl0119.04501MR28 #5039
- [Sc3]P.R. SCOTT, The construction of perfect and extreme forms, Can. J. Math., Vol. 18 (1966), 147-158. Zbl0136.03102MR32 #4091
- [Se1]J.-P. SERRE, Cours d'arithmétique. 2e édition, Presses Univ. de France, Paris, 1977. Zbl0376.12001MR58 #16473
- [Si1]F. SIGRIST, Formes quadratiques encapsulées. Sém. de Th. des Nombres de Bordeaux, 2 (1990), 425-429. Zbl0722.11032MR91m:11025
- [Su1]S.Sh. SUSHBAEV, Voronoï neighborhood of perfect form Ø15 (x1, x2, ..., x7), Vop. Vychisl. Prikl. Mat., 77 (1985), 48-56. Zbl0578.10036
- [St1]K.C. STACEY, The enumeration of perfect quadratic forms in seven variables, Ph. D. Dissertation, University of Oxford, 1973.
- [St2]K.C. STACEY, The enumeration of perfect septenary forms, J. Lond. Math. Soc. (2) 10 (1975), 97-104. Zbl0297.10012MR51 #5507
- [St3]K.C. STACEY, The perfect septenary forms with Δ4 = 2, J. Aust. Math. Soc., (A) 22 (1976), 144-164. Zbl0332.10014MR55 #7929
- [Sti1] E. STIEMKE, Über positive Lösungen homogener linearer Gleichungen, Math. Annalen, 76 (1915), 340-342. JFM45.0168.04
- [Ve1]N.M. VETCHINKIN, Uniqueness of the classes of positive quadratic forms on which the values of Hermite constants are attained for 6 ≤ n ≤ 8, Trudy Mat. Inst. Imeni V. A. Steklova, 152 (1980), 34-86. (traduction anglaise dans Proc. Steklov Inst. Math. (3) (1982), 37-95. Zbl0501.10031
- [Vo1]G. VORONOÏ, Sur quelques propriétés des formes quadratiques positives parfaites, J. reine angew. Math., 133 (1908), 97-178. Zbl38.0261.01JFM38.0261.01
- [Wa1]G.L. WATSON, On the minimum of a positive quadratic form in n(≤ 8) variables (verification of Blichfeldt's calculation), Proc. Camb. Phil. Soc., 62 (1966), 719. Zbl0178.37801MR33 #5571
- [Wa2]G.L. WATSON, On the minimal points of perfect septenary forms, Mathematika, 16 (1969), 170-177. Zbl0185.11101MR41 #1645
- [Wa3] G.L. WATSON, Integral quadratic forms, Cambridge, University Press, 1970.
- [Wa4] G.L. WATSON, On the minimal points of a positive quadratic form, Mathematika, 18 (1971), 60-70. Zbl0219.10032MR44 #6612
- [Wa5]G.L. WATSON, The number of minimum points of a positive quadratic form, Dissertationes Math., 84 (1971), 1-46. Zbl0215.34901MR47 #6610
- [Wa6]G.L. WATSON, The number of minimum points of a positive quadratic form having no perfect binary section with the same minimum, Proc. Lond. Math. Soc. (3) 24 (1972), 625-646. Zbl0233.10012MR46 #7166
Citations in EuDML Documents
top- David-Olivier Jaquet-Chiffelle, François Sigrist, Classification des formes quadratiques réelles: un contre-exemple à la finitude
- Cordian Riener, On extreme forms in dimension 8
- David-Olivier Jaquet-Chiffelle, Trois théorèmes de finitude pour les -formes
- David-Olivier Jaquet-Chiffelle, Description des voisines de et
- François Sigrist, Cyclotomic quadratic forms