On Martin Bordemann's proof of the existence of projectively equivariant quantizations

Pierre Lecomte

Open Mathematics (2004)

  • Volume: 2, Issue: 5, page 793-800
  • ISSN: 2391-5455

Abstract

top
The paper explains the notion of projectively equivariant quantization. It gives a sketch of Martin Bordemann's proof of the existence of projectively equivariant quantization on arbitrary manifolds.

How to cite

top

Pierre Lecomte. "On Martin Bordemann's proof of the existence of projectively equivariant quantizations." Open Mathematics 2.5 (2004): 793-800. <http://eudml.org/doc/268681>.

@article{PierreLecomte2004,
abstract = {The paper explains the notion of projectively equivariant quantization. It gives a sketch of Martin Bordemann's proof of the existence of projectively equivariant quantization on arbitrary manifolds.},
author = {Pierre Lecomte},
journal = {Open Mathematics},
keywords = {53C05; 53D55},
language = {eng},
number = {5},
pages = {793-800},
title = {On Martin Bordemann's proof of the existence of projectively equivariant quantizations},
url = {http://eudml.org/doc/268681},
volume = {2},
year = {2004},
}

TY - JOUR
AU - Pierre Lecomte
TI - On Martin Bordemann's proof of the existence of projectively equivariant quantizations
JO - Open Mathematics
PY - 2004
VL - 2
IS - 5
SP - 793
EP - 800
AB - The paper explains the notion of projectively equivariant quantization. It gives a sketch of Martin Bordemann's proof of the existence of projectively equivariant quantization on arbitrary manifolds.
LA - eng
KW - 53C05; 53D55
UR - http://eudml.org/doc/268681
ER -

References

top
  1. [1] F. Boniver, H. Hansoul, P. Mathonet and N. Poncin: “Equivariant symbol calculus for differential operators acting on forms”, Lett. Math. Phys., Vol. 62(3), (2002), pp. 219–232. http://dx.doi.org/10.1023/A:1022251607566 Zbl1035.17034
  2. [2] M. Bordemann: “Sur l'existence d'une prescription d'ordre naturelle projectivement invariante” (arXiv:math.DG/0208171v1 22Aug2002). 
  3. [3] S. Bouarroudj: “Projectively equivariant quantization map”, Lett. Math. Phys., Vol. 51(4), (2000), pp. 265–274. http://dx.doi.org/10.1023/A:1007692910159 Zbl1067.53071
  4. [4] S. Bouarroudj: “Formula for the projectively invariant quantization on degree three”, C. R. Acad. Sci. Paris Sér. I Math., Vol. 333(4), (2001), pp. 34–346. Zbl0997.53015
  5. [5] C. Duval, P. Lecomte and V. Ovsienko: “Conformally equivariant quantization: existence and uniqueness”, Ann. Inst. Fourier (Grenoble), Vol. 49(6), (1999), pp. 1999–2029. Zbl0932.53048
  6. [6] S. Kobayashi: Transformation groups in differential geometry, Springer, Berlin, 1972. Zbl0246.53031
  7. [7] P. Lecomte: “Towards projectively equivariant Quantization. Noncommutative geometry and string theory”, Meada at al. (Eds.): Progress in theoretical physics, Vol. 144, (2001), pp. 125–132. Zbl1012.53069
  8. [8] P. Lecomte: “On the cohomology of sl(m+1,ℝ) acting on differential Operators and sl(m+1,ℝ) symbols”, Indaga. Math., NS, Vol. 11(1), (2000), pp. 95–114. http://dx.doi.org/10.1016/S0019-3577(00)88577-8 
  9. [9] P. Lecomte and V. Ovsienko: “Projectively equivariant Symbol Calculus”, Letters in Math. Phys., Vol. 49, (1999), pp. 173–196. http://dx.doi.org/10.1023/A:1007662702470 Zbl0989.17015
  10. [10] P. Lecomte and V. Ovsienko: “Cohomology of the Vector Fields Lie Algebra and Modules of differential Operators on a smooth Manifold”, Comp. Math., Vol. 124, (2000), pp. 95–110. http://dx.doi.org/10.1023/A:1002447724679 Zbl0968.17007
  11. [11] P. Mathonet and F. Boniver: “Maximal subalgebras of vector fields for equivariant quantizations”, J. Math. Phys., Vol. 42(2), (2001), pp. 582–589. http://dx.doi.org/10.1063/1.1332782 Zbl1032.17041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.