Conformally equivariant quantization : existence and uniqueness

Christian Duval; Pierre Lecomte; Valentin Ovsienko

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 6, page 1999-2029
  • ISSN: 0373-0956

Abstract

top
We prove the existence and the uniqueness of a conformally equivariant symbol calculus and quantization on any conformally flat pseudo-riemannian manifold ( M , g ) . In other words, we establish a canonical isomorphism between the spaces of polynomials on T * M and of differential operators on tensor densities over M , both viewed as modules over the Lie algebra o ( p + 1 , q + 1 ) where p + q = dim ( M ) . This quantization exists for generic values of the weights of the tensor densities and we compute the critical values of the weights yielding obstructions to the existence of such an isomorphism. In the particular case of half-densities, we obtain a conformally invariant star-product.

How to cite

top

Duval, Christian, Lecomte, Pierre, and Ovsienko, Valentin. "Conformally equivariant quantization : existence and uniqueness." Annales de l'institut Fourier 49.6 (1999): 1999-2029. <http://eudml.org/doc/75408>.

@article{Duval1999,
abstract = {We prove the existence and the uniqueness of a conformally equivariant symbol calculus and quantization on any conformally flat pseudo-riemannian manifold $(M,g)$. In other words, we establish a canonical isomorphism between the spaces of polynomials on $T^*M$ and of differential operators on tensor densities over $M$, both viewed as modules over the Lie algebra $\{\rm o\}(p+1,q+1)$ where $p+q=\dim (M)$. This quantization exists for generic values of the weights of the tensor densities and we compute the critical values of the weights yielding obstructions to the existence of such an isomorphism. In the particular case of half-densities, we obtain a conformally invariant star-product.},
author = {Duval, Christian, Lecomte, Pierre, Ovsienko, Valentin},
journal = {Annales de l'institut Fourier},
keywords = {quantisation; conformal structures; modules of differential operators; tensor densities; Casimir operators; star products; half-densities},
language = {eng},
number = {6},
pages = {1999-2029},
publisher = {Association des Annales de l'Institut Fourier},
title = {Conformally equivariant quantization : existence and uniqueness},
url = {http://eudml.org/doc/75408},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Duval, Christian
AU - Lecomte, Pierre
AU - Ovsienko, Valentin
TI - Conformally equivariant quantization : existence and uniqueness
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 6
SP - 1999
EP - 2029
AB - We prove the existence and the uniqueness of a conformally equivariant symbol calculus and quantization on any conformally flat pseudo-riemannian manifold $(M,g)$. In other words, we establish a canonical isomorphism between the spaces of polynomials on $T^*M$ and of differential operators on tensor densities over $M$, both viewed as modules over the Lie algebra ${\rm o}(p+1,q+1)$ where $p+q=\dim (M)$. This quantization exists for generic values of the weights of the tensor densities and we compute the critical values of the weights yielding obstructions to the existence of such an isomorphism. In the particular case of half-densities, we obtain a conformally invariant star-product.
LA - eng
KW - quantisation; conformal structures; modules of differential operators; tensor densities; Casimir operators; star products; half-densities
UR - http://eudml.org/doc/75408
ER -

References

top
  1. [1] F. BAYEN, M. FLATO, C. FRONSDAL, A. LICHNEROWICZ and D. STERNHEIMER, Deformation theory and quantization, Ann. Phys. (N.Y.), 111 (1978), 61-151. Zbl0377.53024MR58 #14737a
  2. [2] F. A. BEREZIN, Quantization, Math. USSR Izvestija, 8-5 (1974), 1109-1165. Zbl0312.53049MR52 #16404
  3. [3] F. A. BEREZIN, Quantization in complex symmetric spaces, Math. USSR Izvestija, 9-2 (1976), 341-379. Zbl0324.53049MR56 #8752
  4. [4] A. L. BESSE, Einstein Manifolds, Springer-Verlag, Berlin-Heidelberg, 1987. Zbl0613.53001MR88f:53087
  5. [5] F. BONIVER and P. B. A. LECOMTE, A remark about the Lie algebra of infinitesimal conformal transformations of the Euclidian space, math.DG/9901034. Zbl1050.53019
  6. [6] P. COHEN, Yu. MANIN and D. ZAGIER, Automorphic pseudodifferential operators, Algebraic aspects of integrable systems, 17-47, Progr. Nonlinear Differential Equations Appl., 26, Birkhäuser Boston, Boston, MA, 1997. Zbl1055.11514MR98e:11054
  7. [7] M. De WILDE and P. B. A. LECOMTE, Formal deformation of the Poisson Lie algebra of a symplectic manifold and star-products, in Deformation Theory of Algebras and Structures And Applications, Kluver Acad. Pub., Dordrecht, 1988, and references therein. Zbl0685.58039
  8. [8] C. DUVAL and V. OVSIENKO, Space of second order linear differential operators as a module over the Lie algebra of vector fields, Advances in Math., 132-2 (1997), 316-333. Zbl0902.17011MR99b:17028
  9. [9] C. DUVAL and V. OVSIENKO, Conformally equivariant quantization, preprint CPT-98/P.3610, math. DG/9801122. 
  10. [10] B. FEDOSOV, Deformation Quantization and Index Theory, Akademie Verlag, Berlin, 1996. Zbl0867.58061MR97a:58179
  11. [11] H. GARGOUBI, Sur la géométrie des opérateurs différentiels linéaires sur R, preprint CPT, 1997, P. 3472. Zbl0986.17008
  12. [12] H. GARGOUBI and V. OVSIENKO, Space of linear differential operators on the real line as a module over the Lie algebra of vector fields, Int. Res. Math. Notes, 1996, No. 5, 235-251. Zbl0851.17023MR96m:17041
  13. [13] A. GONZÁLEZ-LÓPEZ, N. KAMRAN and P. J. OLVER, Lie algebras of vector fields in the real plane, Proc. London Math. Soc., 64 (1992), 339-368. Zbl0872.17022MR92m:17038
  14. [14] A. A. KIRILLOV, Elements of the theory of representations, Springer-Verlag, Berlin-New York, 1976. Zbl0342.22001MR54 #447
  15. [15] A. A. KIRILLOV, Geometric Quantization, in Encyclopedia of Math. Sci. Vol. 4, Springer-Verlag, 1990. Zbl0780.58024
  16. [16] A. A. KIRILLOV, Closed algebras of differential operators, preprint 1996. 
  17. [17] B. KOSTANT, Quantization and Unitary Representations, in Lecture Notes in Math., Springer-Verlag, Vol. 170, 1970. Zbl0223.53028MR45 #3638
  18. [18] B. KOSTANT, Symplectic Spinors, in Symposia Math., Vol. 14, London, Acad. Press, 1974. Zbl0321.58015MR53 #4139
  19. [19] P. B. A. LECOMTE, On the cohomology of sl(m + 1, R) acting on differential operators and sl(m + 1, ℝ)-equivariant symbol, preprint Université de Liège, 1998. 
  20. [20] P. B. A. LECOMTE, Classification projective des espaces d'opérateurs différentiels agissant sur les densités, C.R.A.S., 328, Ser. 1 (1999). Zbl1017.17022MR99k:22022
  21. [21] P. B. A. LECOMTE, P. MATHONET and E. TOUSSET, Comparison of some modules of the Lie algebra of vector fields, Indag. Math., N.S., 7-4 (1996), 461-471. Zbl0892.58002MR99c:17038
  22. [22] P. B. A. LECOMTE and V. OVSIENKO, Projectively invariant symbol map and cohomology of vector fields Lie algebras intervening in quantization, dg-ga/9611006; Projectively invariant symbol calculus, math.DG/9809061. 
  23. [23] P. MATHONET, Intertwining operators between some spaces of differential operators on a manifold, Comm. in Algebra (1999), to appear. Zbl0924.17017MR99m:58209
  24. [24] R. PENROSE and W. RINDLER, Spinors and space-time, Vol. 2, Spinor and twistor methods in space-time geometry, Cambridge University Press, 1986. Zbl0591.53002MR88b:83003
  25. [25] G. POST, A class of graded Lie algebras of vector fields and first order differential operators, J. Math. Phys., 35-12 (1994), 6338-6856. Zbl0834.17038MR95i:17023
  26. [26] J.-M. SOURIAU, Structure des systèmes dynamiques, Dunod, 1970, (c) 1969, Structure of Dynamical Systems. A Symplectic View of Physics, Birkhäuser, 1997. Zbl0186.58001
  27. [27] H. WEYL, The Classical Groups, Princeton University Press, 1946. Zbl1024.20502
  28. [28] E. J. WILCZYNSKI, Projective differential geometry of curves and ruled surfaces, Leipzig, Teubner, 1906. Zbl37.0620.02JFM37.0620.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.