On stabilizability of evolution systems of partial differential equations on ℝn×[0,+∞) by time-delayed feedback controlsby time-delayed feedback controls

L. Fardigola

Open Mathematics (2003)

  • Volume: 1, Issue: 2, page 141-156
  • ISSN: 2391-5455

How to cite

top

L. Fardigola. "On stabilizability of evolution systems of partial differential equations on ℝn×[0,+∞) by time-delayed feedback controlsby time-delayed feedback controls." Open Mathematics 1.2 (2003): 141-156. <http://eudml.org/doc/268684>.

@article{L2003,
abstract = {},
author = {L. Fardigola},
journal = {Open Mathematics},
keywords = {93D15; 35B37; 35A22},
language = {eng},
number = {2},
pages = {141-156},
title = {On stabilizability of evolution systems of partial differential equations on ℝn×[0,+∞) by time-delayed feedback controlsby time-delayed feedback controls},
url = {http://eudml.org/doc/268684},
volume = {1},
year = {2003},
}

TY - JOUR
AU - L. Fardigola
TI - On stabilizability of evolution systems of partial differential equations on ℝn×[0,+∞) by time-delayed feedback controlsby time-delayed feedback controls
JO - Open Mathematics
PY - 2003
VL - 1
IS - 2
SP - 141
EP - 156
AB -
LA - eng
KW - 93D15; 35B37; 35A22
UR - http://eudml.org/doc/268684
ER -

References

top
  1. [1] R. Bellman and K.L. Cook: Differential-Difference Equations, Acad. Press, New York-London, 1963. 
  2. [2] R.F. Curtain and A.J. Pritchard: “Robust stabilization of infinite-dimensional systems with respect to coprime factor perturbations”, In: Differential equations, dynamical systems, and control science. A Festschrift in Honor of Lawrence Markus. Marcel Dekker. Lect. Notes Pure Appl. Math., New York, NY, Vol. 152, (1994), pp. 437–456. Zbl0792.93097
  3. [3] R. Datko, J. Lagnese, M.P. Polis: “An example of the effect of time delays in boundary feedback stabilization of wave equations”, SIAM J. Control. Optim., Vol. 24, (1986), pp. 152–156. http://dx.doi.org/10.1137/0324007 Zbl0592.93047
  4. [4] L.V. Fardigola: “On a nonlocal two-point boundary-value problem in a layer for an equation with variable coefficients” (in Russian), Sibirsk. Mat. Zh., Vol. 38, (1997), pp. 424–438, English translation in: Siberian Math. J., Vol. 38, (1997), pp. 367–379. 
  5. [5] L.V. Fardigola: “On stabilizability of evolution systems of partial differential equations on ℝn ×[0,+∞) by feedback control”, Visnyk Kharkivs'kogo Universytetu. Ser. Matematyka, Prykladna Matematyka i Mekhanika, Vol. 475, (2000), pp. 183–194. 
  6. [6] L.V. Fardigola: “A criterion for stabilizability of differential equations with constant coefficients on the whole space”, (in Russian), Differ. uravn., Vol. 36, (2000), pp. 1699–1706, English translation in: Differ. Equ., Vol. 36, (2000), pp. 1863–1871. Zbl1017.78522
  7. [7] I.M. Gelfand and G.E. Shilov: Generalized Functions (in Russian), Vol. 3, Moskow, 1958. 
  8. [8] L. Hörmander: The analysis of linear differential operators. V. 2: Differential operators with constant coefficients, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983. Zbl0521.35002
  9. [9] L. Hörmander: “On the division of distributions by polynomials”, Ark. Mat., Vol. 3, (1958), pp. 555–568. Zbl0131.11903
  10. [10] N. Levan: “The left shift semigroup approach to stability of distributed systems”, J. Math. Anal. Appl., Vol. 152, (1990), pp. 354–367. http://dx.doi.org/10.1016/0022-247X(90)90070-V Zbl0783.47055
  11. [11] S. Łojasiewicz: “Sur le problème de la division”, Studia Math., Vol. 18, (1959), pp. 87–136. Zbl0115.10203
  12. [12] H. Logemann: “Destabilizing effect of small time delays on feedback controlled descriptor systems”, Linear Algebra and its Appl., Vol. 272, (1998), pp. 131–153. http://dx.doi.org/10.1016/S0024-3795(97)00328-5 
  13. [13] L. Pandolfi: “On feedback stabilization of functional differential equations”, Boll. Unione Mat. Ital., IV Ser. 11, Suppl. Fasc., Vol. 3, (1975), pp. 626–635. Zbl0318.93027
  14. [14] I.G. Petrowsky: “On the Cauchy problem for systems of linear partial differential equations in a domain of nonanalitic functions”, Bull. Mosk. Univ., Ser. A, No. 7, (1938), pp. 1–72. 
  15. [15] L.S. Pontriagin: “On zeroz on some elementary transcendence functions”, Izv. AN SSSR, Ser. Mat., Vol. 6, (1942), pp. 115–134. 
  16. [16] R. Rebarber and S. Townley: “Robustness with respect to delay for exponential stability of distributed parameter systems”, SIAM J. Contr. Optim., Vol. 37, (1998), pp. 230–244. http://dx.doi.org/10.1137/S0363012996312453 Zbl0919.93041
  17. [17] A. Seidenberg: “A new decision method for elementary algebra”, Ann. Math., Vol. 2, (1954), pp. 365–374. http://dx.doi.org/10.2307/1969640 Zbl0056.01804
  18. [18] J.M. Sloss, I.S. Sadek, J.C. Bruch, S. Aldali: “Stabilization of structurally damped systems by time-delayed feedback control”, Dyn. Stab. Syst., Vol. 7, (1992), pp. 173–178. Zbl0771.93031
  19. [19] C.C. Travis and G.F. Webb: “Existence and stability for partial functional differential equations”, Trans. Am. Math, Soc., Vol. 200, (1974), pp. 395–418. http://dx.doi.org/10.2307/1997265 Zbl0299.35085

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.