On zeta-functions associated to certain cusp forms. I
Open Mathematics (2004)
- Volume: 2, Issue: 1, page 1-18
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topA. Laurinčikas, and J. Steuding. "On zeta-functions associated to certain cusp forms. I." Open Mathematics 2.1 (2004): 1-18. <http://eudml.org/doc/268697>.
@article{A2004,
abstract = {In the paper the asymptotics for Dirichlet polynomials associated to certain cusp forms are obtained.},
author = {A. Laurinčikas, J. Steuding},
journal = {Open Mathematics},
keywords = {11M41; 11N37},
language = {eng},
number = {1},
pages = {1-18},
title = {On zeta-functions associated to certain cusp forms. I},
url = {http://eudml.org/doc/268697},
volume = {2},
year = {2004},
}
TY - JOUR
AU - A. Laurinčikas
AU - J. Steuding
TI - On zeta-functions associated to certain cusp forms. I
JO - Open Mathematics
PY - 2004
VL - 2
IS - 1
SP - 1
EP - 18
AB - In the paper the asymptotics for Dirichlet polynomials associated to certain cusp forms are obtained.
LA - eng
KW - 11M41; 11N37
UR - http://eudml.org/doc/268697
ER -
References
top- [1] H. Bohr: “Über Diophantische Approximationen und ihre Anwendung auf Dirichletsche Reihen, besonders auf die Riemannsche Zetafunktion”, In: Proc. 5th Congress of Scand. Math., 1923, Helsingfors, pp. 131–154.
- [2] H. Bohr and B. Jessen: “Über die Wertverteilung der Riemannschen Zetafunktion, Erste Mitteilung”, Acta Math., Vol. 54, (1930), pp. 1–35. Zbl56.0287.01
- [3] H. Bohr and B. Jessen: “Über die Wertverteilung der Riemannschen Zetafunktion, Zweite Mitteilung”, Acta Math., Vol. 58, (1932), pp. 1–55. Zbl0003.38901
- [4] P. Deligne: “La conjecture de Weil”, Inst. Hautes Etudes Sci. Publ. Math., Vol. 43, (1974), pp. 273–307. Zbl0287.14001
- [5] F. Grupp: “Eine Bemerkung zur Ramanujanschen τ-Funktion”, Arch. Math., Vol. 43, (1984), pp. 358–363. http://dx.doi.org/10.1007/BF01196660
- [6] D.R. Health-Brown: “Franctional moments of the Riemann zeta-function”, J. London Math. Soc., Vol. 24(2), (1981), pp. 65–78.
- [7] D. Joyner: Distribution Theorems of L-functions, Longman Scientific, Harlow, 1986. Zbl0609.10032
- [8] A. Kačėnas and A. Laurinčikas: “On Dirichlet series related to certain cusp forms”, Lith. Math. J., Vol. 38, (1998), pp. 64–76. http://dx.doi.org/10.1007/BF02465545 Zbl0926.11064
- [9] A. Laurinčikas: Limit Theorems for the Riemann Zeta-function, Kluwer, Dordrecht, 1996.
- [10] A. Laurinčikas and R. Garunkštis: The Lerch Zeta-Function, Kluwer, Dordrecht, 2002. Zbl1028.11052
- [11] R. Leipnik: “The lognormal distribution and strong nonuniqueness of the moment problems”, Teor. Veroyatn. Primenen., Vol. 26, (1981), pp. 863–865. Zbl0474.60013
- [12] B.V. Levin and A.S. Fainleib: “On one method of summing of multiplicative functions”, Izv. AN SSSR, ser. matem., Vol. 31, (1967), pp. 697–710.
- [13] B.V. Levin and A.S. Fainleib: “Application of certain integral equations to problems of the number theory”, Uspechi matem. nauk, Vol. 22(3), (1967), pp. 119–197. Zbl0204.06502
- [14] K. Matsumoto: “Probabilistic value-distribution theory of zeta-functions”, Sūgaku, Vol. 53, (2001), pp. 279–296.
- [15] H.L. Montgomery and R.C. Vaughan: “Hilbert’s inequality”, J. London Math. Soc., Vol. 8(2), (1974), pp. 73–82. Zbl0281.10021
- [16] L. Mordell: “On Mr. Ramanujan’s empirical expansions of modular functions”, Proc. Camb. Phil. Soc., Vol. 19, (1917), pp. 117–124. Zbl46.0605.01
- [17] S. Ramanujan: “On certain arithmetic al functions”, it Trans. Camb. Phil. Soc., Vol. 22, (1916), pp. 159–184.
- [18] R.A. Rankin: “An Ω-result for the coefficients of cusp forms”, Math. Ann., Vol. 203, (1973), pp. 239–250. http://dx.doi.org/10.1007/BF01629259 Zbl0254.10021
- [19] R.A. Rankin: “Ramanujan’s tau-function and its generalizations”, Ramanujan revisited (Urbana-Champaign, Ill. 1987), Academic Press, Boston, 1988, pp. 245–268.
- [20] A. Selberg: “Old and new conjectures and results about a class of Dirichlet series”, Collected Papers, Vol. 2, Springer-Verlag, Berlin, 1991, pp. 47–63.
- [21] G. Tenenbaum: Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, 1995.
- [22] E. Wirsing: “Das asymptotische Verhalten von Summen Über multiplikative Funktionen”, Math. Ann., Vol. 143, (1961), pp. 75–102. http://dx.doi.org/10.1007/BF01351892 Zbl0104.04201
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.