Finite dimensional global attractor for a class of doubly nonlinear parabolic equations

Alain Miranville

Open Mathematics (2006)

  • Volume: 4, Issue: 1, page 163-182
  • ISSN: 2391-5455

Abstract

top
Our aim in this paper is to study the long time behavior of a class of doubly nonlinear parabolic equations. In particular, we prove the existence of the global attractor which has, in one and two space dimensions, finite fractal dimension.

How to cite

top

Alain Miranville. "Finite dimensional global attractor for a class of doubly nonlinear parabolic equations." Open Mathematics 4.1 (2006): 163-182. <http://eudml.org/doc/268705>.

@article{AlainMiranville2006,
abstract = {Our aim in this paper is to study the long time behavior of a class of doubly nonlinear parabolic equations. In particular, we prove the existence of the global attractor which has, in one and two space dimensions, finite fractal dimension.},
author = {Alain Miranville},
journal = {Open Mathematics},
keywords = {35B41; 35K55},
language = {eng},
number = {1},
pages = {163-182},
title = {Finite dimensional global attractor for a class of doubly nonlinear parabolic equations},
url = {http://eudml.org/doc/268705},
volume = {4},
year = {2006},
}

TY - JOUR
AU - Alain Miranville
TI - Finite dimensional global attractor for a class of doubly nonlinear parabolic equations
JO - Open Mathematics
PY - 2006
VL - 4
IS - 1
SP - 163
EP - 182
AB - Our aim in this paper is to study the long time behavior of a class of doubly nonlinear parabolic equations. In particular, we prove the existence of the global attractor which has, in one and two space dimensions, finite fractal dimension.
LA - eng
KW - 35B41; 35K55
UR - http://eudml.org/doc/268705
ER -

References

top
  1. [1] H.W. Alt and S. Luckhaus: “Quasilinear elliptic-parabolic differential equations”, Math. Z., Vol. 183, (1983), pp. 311–341. http://dx.doi.org/10.1007/BF01176474 Zbl0497.35049
  2. [2] T. Arai: “On the existence of the solution for ∂ϕ(u′(t)) + ∂ψ(u(t)) ∋ f(t)”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Vol. 26, (1979), pp. 75–96. Zbl0418.35056
  3. [3] A.V. Babin and M.I. Vishik: Attractors of evolution equations, North-Holland, Amsterdam, 1992. 
  4. [4] A. Bamberger: “Etude d'une équation doublement non linéaire”, J. Funct. Anal., Vol. 24, (1977), pp. 148–155. http://dx.doi.org/10.1016/0022-1236(77)90051-9 
  5. [5] V. Barbu: Nonlinear semigroups and differential equations in Banach spaces, Noordhoff, Leiden, 1976. 
  6. [6] H. Brezis: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, 1973. Zbl0252.47055
  7. [7] P. Colli: “On some doubly nonlinear evolution equations in Banach spaces”, Japan J. Indust. Appl. Math., Vol. 9, (1992), pp. 181–203. http://dx.doi.org/10.1007/BF03167565 Zbl0757.34051
  8. [8] P. Colli and A. Visintin: “On a class of doubly nonlinear evolution problems”, Comm. Partial Diff. Eqns., Vol. 15, (1990), pp. 737–756. Zbl0707.34053
  9. [9] E. DiBenedetto and R.E. Showalter: “Implicit degenerate evolution equations and applications”, S.I.A.M. J. Math. Anal., Vol. 12, (1981), pp. 731–751. http://dx.doi.org/10.1137/0512062 Zbl0477.47037
  10. [10] A. Eden, C. Foias, B. Nicolaenko and R. Temam: Exponential attractors for dissipative evolution equations, Research in Applied Mathematics, Vol. 37, John-Wiley, New York, 1994. Zbl0842.58056
  11. [11] A. Eden, B. Michaux and J.-M. Rakotoson: “Doubly nonlinear parabolic-type equations as dynamical systems”, J. Dyn. Diff. Eqns., Vol. 3, (1991), pp. 87–131. http://dx.doi.org/10.1007/BF01049490 Zbl0802.35011
  12. [12] A. Eden and J.-M. Rakotoson: “Exponential attractors for a doubly nonlinear equation”, J. Math. Anal. Appl., Vol. 185(2), (1994), pp. 321–339. http://dx.doi.org/10.1006/jmaa.1994.1251 
  13. [13] M. Efendiev, A. Miranville and S. Zelik: “Exponential attractors for a nonlinear reaction-diffusion system in R 3”, C. R. Acad. Sci. Paris Sér. I, Vol. 330, (2000), pp. 713–718. Zbl1151.35315
  14. [14] C.M. Elliott and R. Schätzle: “The limit of the anisotropic double-obstacle Allen-Cahn equation”, Proc. Royal Soc. Edin. A, Vol. 126, (1996), pp. 1217–1234. Zbl0865.35073
  15. [15] O. Grange and F. Mignot: “Sur la résolution d'une équation et d'une inéquation paraboliques non linéaires”, J. Funct. Anal., Vol. 11, (1972), pp. 77–92. http://dx.doi.org/10.1016/0022-1236(72)90080-8 Zbl0251.35055
  16. [16] M. Gurtin: “Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance”, Physica D, Vol. 92, (1996), pp. 178–192. http://dx.doi.org/10.1016/0167-2789(95)00173-5 
  17. [17] O.A. Ladyzhenskaya and N.N. Ural'ceva: Equations aux dérivées partielles de type elliptique, Monographies universitaires de Mathématiques, Vol. 31, Dunod, 1968. 
  18. [18] J.-L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. 
  19. [19] J. Malek and D. Prazak: “Long time behavior via the method of l-trajectories”, J. Diff. Eqns., Vol. 18(2), (2002), pp. 243–279. http://dx.doi.org/10.1006/jdeq.2001.4087 
  20. [20] D. Prazak: “A necessary and sufficient condition for the existence of an exponential attractor”, Cent. Eur. J. Math., Vol. 1(3), (2003), pp. 411–417. 
  21. [21] P.-A. Raviart: “Sur la résolution de certaines équations paraboliques non linéaires”, J. Funct. Anal., Vol. 5, (1970), pp. 299–328. http://dx.doi.org/10.1016/0022-1236(70)90031-5 
  22. [22] A. Segatti: “Global attractor for a class of doubly nonlinear abstract evolution equations”, Discrete Cont. Dyn. Systems, To appear. Zbl1092.37052
  23. [23] K. Shirakawa: “Large time behavior for doubly nonlinear systems generated by sub-differentials”, Adv. Math. Sci. Appl., Vol. 10, (2000), pp. 77–92. 
  24. [24] R.E. Showalter: Monotone operators in Banach spaces and nonlinear partial differential equations, Amer. Math. Soc., Providence, R.I., 1997. Zbl0870.35004
  25. [25] J. Simon: “Régularité de la solution d'un problème aux limites non linéaire”, Ann. Fac. Sci. Toulouse, Vol. 3(3–4), (1981), pp. 247–274. Zbl0487.35015
  26. [26] J.E. Taylor and J.W. Cahn: “Linking anisotropic sharp and diffuse surface motion laws via gradient flows”, J. Statist. Phys., Vol. 77(1–2), (1993), pp. 183–197. Zbl0844.35044
  27. [27] R. Temam: Infinite dimensional dynamical systems in mechanics and physics, 2nd ed., Springer-Verlag, 1997. Zbl0871.35001
  28. [28] A. Visintin: Models of phase transitions, Birkhäuser, Boston, 1996. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.