On the finite dimension of attractors of doubly nonlinear parabolic systems with l-trajectories

Hamid El Ouardi

Archivum Mathematicum (2007)

  • Volume: 043, Issue: 4, page 289-303
  • ISSN: 0044-8753

Abstract

top
This paper is concerned with the asymptotic behaviour of a class of doubly nonlinear parabolic systems. In particular, we prove the existence of the global attractor which has, in one and two space dimensions, finite fractal dimension.

How to cite

top

El Ouardi, Hamid. "On the finite dimension of attractors of doubly nonlinear parabolic systems with l-trajectories." Archivum Mathematicum 043.4 (2007): 289-303. <http://eudml.org/doc/250160>.

@article{ElOuardi2007,
abstract = {This paper is concerned with the asymptotic behaviour of a class of doubly nonlinear parabolic systems. In particular, we prove the existence of the global attractor which has, in one and two space dimensions, finite fractal dimension.},
author = {El Ouardi, Hamid},
journal = {Archivum Mathematicum},
keywords = {doubly nonlinear parabolic systems; existence of solutions; global and exponential attractor; fractal dimension and l-trajectories; doubly nonlinear parabolic systems; existence of solutions; global attractor; exponential attractor},
language = {eng},
number = {4},
pages = {289-303},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the finite dimension of attractors of doubly nonlinear parabolic systems with l-trajectories},
url = {http://eudml.org/doc/250160},
volume = {043},
year = {2007},
}

TY - JOUR
AU - El Ouardi, Hamid
TI - On the finite dimension of attractors of doubly nonlinear parabolic systems with l-trajectories
JO - Archivum Mathematicum
PY - 2007
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 043
IS - 4
SP - 289
EP - 303
AB - This paper is concerned with the asymptotic behaviour of a class of doubly nonlinear parabolic systems. In particular, we prove the existence of the global attractor which has, in one and two space dimensions, finite fractal dimension.
LA - eng
KW - doubly nonlinear parabolic systems; existence of solutions; global and exponential attractor; fractal dimension and l-trajectories; doubly nonlinear parabolic systems; existence of solutions; global attractor; exponential attractor
UR - http://eudml.org/doc/250160
ER -

References

top
  1. Alt H. W., Luckhaus S., Quasilinear elliptic and parabolic differential equations, Math. Z. 183 (1983), 311–341. (1983) MR0706391
  2. Bamberger A., Etude d’une équation doublement non linéaire, J. Funct. Anal. 24 (1977), 148–155. (1977) Zbl0345.35059MR0470490
  3. Blanchard D., Francfort G., Study of doubly nonlinear heat equation with no growth assumptions on the parabolic term, Siam. J. Anal. Math. 9 (5), (1988), 1032–1056. (1988) MR0957665
  4. Diaz J., de Thelin F., On a nonlinear parabolic problem arising in some models related to turbulent flows, Siam. J. Anal. Math. 25 (4), (1994), 1085–1111. (1994) Zbl0808.35066MR1278892
  5. Diaz J., Padial J. F., Uniqueness and existence of solutions in the BV t ( Q ) space to a doubly nonlinear parabolic problem, Publ. Mat. 40 (1996), 527–560. (1996) MR1425634
  6. Eden A., Michaux B., Rakotoson J. M., Doubly nonlinear parabolic type equations as dynamical systems, J. Dynam. Differential Equations 3 (1), (1991), 87–131. (1991) Zbl0802.35011MR1094725
  7. Eden A., Michaux B., Rakotoson J. M., Semi-discretized nonlinear evolution equations as discrete dynamical systems and error analysis, Indiana Univ. Math. J. 39 (3), (1990), 737–783. (1990) Zbl0732.35037MR1078736
  8. El Hachimi A., de Thelin F., Supersolutions and stabilisation of the solutions of the equation u t - p u = f ( x , u ) , Part I, Nonlinear Anal., Theory Methods Appl. 12 (12), (1988), 1385–1398. (1988) MR0972407
  9. El Hachimi A., de Thelin F., Supersolutions and stabilisation of the solutions of the equation u t - p u = f ( x , u ) , Part II, Publ. Mat. 35 (1991), 347–362. (1991) MR1201561
  10. El Ouardi H., de Thelin F., Supersolutions and stabilization of the solutions of a nonlinear parabolic system, Publ. Mat. 33 (1989), 369–381. (1989) MR1030974
  11. El Ouardi H., El Hachimi A., Existence and attractors of solutions for nonlinear parabolic systems, Electron. J. Qual. Theory Differ. Equ. 5 (2001), 1–16. MR1873359
  12. El Ouardi H., El Hachimi A., Existence and regularity of a global attractor for doubly nonlinear parabolic equations, Electron. J. Differ. Equ. (45) (2002), 1–15. Zbl0993.35021MR1907721
  13. El Ouardi H., El Hachimi A., Attractors for a class of doubly nonlinear parabolic systems, Electron. J. Qual. Theory Differ. Equ. (1) (2006), 1–15. Zbl1085.35064MR2210533
  14. Dung L., Ultimate boundedness of solutions and gradients of a class of degenerate parabolic systems, Nonlinear Anal., Theory Methods Appl. 39 (2000), 157–171. MR1722106
  15. Dung L., Global attractors and steady states for a class of reaction diffusion systems, J. Differential Equations 147 (1998), 1–29. (1998) MR1632736
  16. Lions J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris 1969. (1969) Zbl0189.40603MR0259693
  17. Langlais M., Phillips D., Stabilization of solution of nonlinear and degenerate evolution equatins, Nonlinear Anal., Theory Methods Appl. 9 (1985), 321–333. (1985) MR0783581
  18. Ladyzhznskaya O., Solonnikov V. A., Outraltseva N. N., Linear and quasilinear equations of parabolic type, Trans. Amer. Math. Soc. XI, 1968. (1968) 
  19. Marion M., Attractors for reaction-diffusion equation: existence and estimate of their dimension, Appl. Anal. 25 (1987), 101–147. (1987) MR0911962
  20. Málek J., Pražák D., Long time behaviour via the method of l-trajectories, J. Differential Equations 18 (2), (2002), 243–279. 
  21. Miranville A., Finite dimensional global attractor for a class of doubly nonlinear parabolic equations, Central European J. Math. 4 (1), (2006), 163–182. Zbl1102.35023MR2213032
  22. Foias C., Constantin P., Temam R., Attractors representing turbulent flows, Mem. Am. Math. Soc. 314 (1985), 67p. (1985) Zbl0567.35070MR0776345
  23. Foias C., Temam R., Structure of the set of stationary solutions of the Navier-Stokes equations, Commun. Pure Appl. Math. 30 (1977), 149–164. (1977) Zbl0335.35077MR0435626
  24. Simon J., Régularité de la solution d’un problème aux limites non linéaire, Ann. Fac. Sci. Toulouse Math. (6),(1981), 247–274. (1981) MR0658735
  25. Schatzman M., Stationary solutions and asymptotic behavior of a quasilinear parabolic equation, Indiana Univ. Math. J. 33 (1984), 1–29. (1984) MR0726104
  26. Raviart P. A., Sur la résolution de certaines équations paraboliques non linéaires, J. Funct. Anal. 5 (1970), 299–328. (1970) Zbl0199.42401MR0257585
  27. Temam R., Infinite dimensional dynamical systems in mechanics and physics, Appl. Math. Sci. 68, Springer-Verlag 1988. (1988) Zbl0662.35001MR0953967
  28. Tsutsumi M., On solutions of some doubly nonlinear degenerate parabolic systems with absorption, J. Math. Anal. Appl. 132 (1988), 187–212. (1988) MR0942364

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.