On the homotopy type of (n-1)-connected (3n+1)-dimensional free chain Lie algebra
Mahmoud Benkhalifa; Nabilah Abughzalah
Open Mathematics (2005)
- Volume: 3, Issue: 1, page 58-75
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D.J. Anick: “Hopf algebras up to homotopy”, J. Amer. Math. Soc., Vol. 2(3), (1989). pp. 417–452. http://dx.doi.org/10.2307/1990938 Zbl0681.55006
- [2] D.J. Anick: “An R-local Milnor-Moore Theorem”, Advances in Math, Vol. 77, (1989), pp. 116–136. http://dx.doi.org/10.1016/0001-8708(89)90016-9 Zbl0684.55010
- [3] H.J. Baues: Homotopy Type and Homology, Oxford Mathematical Monographs, Oxford University Press, Oxford, 1996.
- [4] H.J. Baues: “Algebraic homotopy”, Cambridge studies in advanced mathematics, Vol. 15, (1989).
- [5] M. Benkhalifa: Modèles algebriques et suites exactes de Whitehead, Thesis (PhD), Université de Nice France, 1995.
- [6] M. Benkhalifa: “Sur le type d’homotopie d’un CW-complexe”, Homology, Homotopy and Applications, Vol. 5(1), (2003), pp. 101–120. Zbl1041.55004
- [7] M. Benkhalifa: “On the homotopy type of a chain algebra”, Homology, Homotopy and Applications, Vol. 6(1), (2004), pp. 109–135. Zbl1070.55010
- [8] Y. Felix, S. Halperin and J.C. Thomas: “Rational homotopy theory”, C.M.T., Vol. 205, (2000). Zbl0961.55002
- [9] S. MacLane: Homology, Springer, 1967.
- [10] J. Milnor and J.C. Moore: “On the structure of Hopf algebras”, Ann. Math., Vol. 81, (1965), pp. 211–264. http://dx.doi.org/10.2307/1970615 Zbl0163.28202
- [11] J.C. Moore: Séminaire H. Cartan, Exposé 3, 1954–1955.
- [12] J.H.C. Whitehead: “A certain exact sequence”, Ann. Math., Vol. 52, (1950), pp. 51–110. http://dx.doi.org/10.2307/1969511 Zbl0037.26101