On higher order geometry on anchored vector bundles

Paul Popescu

Open Mathematics (2004)

  • Volume: 2, Issue: 5, page 826-839
  • ISSN: 2391-5455

Abstract

top
Some geometric objects of higher order concerning extensions, semi-sprays, connections and Lagrange metrics are constructed using an anchored vector bundle.

How to cite

top

Paul Popescu. "On higher order geometry on anchored vector bundles." Open Mathematics 2.5 (2004): 826-839. <http://eudml.org/doc/268721>.

@article{PaulPopescu2004,
abstract = {Some geometric objects of higher order concerning extensions, semi-sprays, connections and Lagrange metrics are constructed using an anchored vector bundle.},
author = {Paul Popescu},
journal = {Open Mathematics},
keywords = {14R25; 44A15; 53C07; 53B15; 22A30; 70S05},
language = {eng},
number = {5},
pages = {826-839},
title = {On higher order geometry on anchored vector bundles},
url = {http://eudml.org/doc/268721},
volume = {2},
year = {2004},
}

TY - JOUR
AU - Paul Popescu
TI - On higher order geometry on anchored vector bundles
JO - Open Mathematics
PY - 2004
VL - 2
IS - 5
SP - 826
EP - 839
AB - Some geometric objects of higher order concerning extensions, semi-sprays, connections and Lagrange metrics are constructed using an anchored vector bundle.
LA - eng
KW - 14R25; 44A15; 53C07; 53B15; 22A30; 70S05
UR - http://eudml.org/doc/268721
ER -

References

top
  1. [1] A. Bejancu: Vectorial Finsler connections and theory of Finsler subspaces, Seminar on Geometry and Topology, Timişoara, 1986. 
  2. [2] M.B. Boyom: Anchored vector bundles and algebroids, arXiv:math.DG/0208012. 
  3. [3] I. Bucataru: “Horizontal lift in the higher order geometry”, Publ. Math. Debrecen, Vol. 56(1–2), (2000), pp. 21–32. Zbl0992.53054
  4. [4] R.L. Fernandes: “Lie algebroids, holonomy and characteristic classes”, Adv. in Math., Vol. 70, (2002), pp. 119–179 (arXiv:math-DG 0007132). http://dx.doi.org/10.1006/aima.2001.2070 Zbl1007.22007
  5. [5] Frans Cantrijn and Bavo Langerock: “Generalised Connections over a Vector Bundle Map”, Diff. Geom. Appl., Vol. 18, (2003), pp. 295–317 (arXiv: math.DG/0201274). http://dx.doi.org/10.1016/S0926-2245(02)00164-X Zbl1036.53014
  6. [6] R. Miron: The Geometry of Higher Order Lagrange Spaces. Applications to Mechanics and Physics, Kluwer, Dordrecht, FTPH no 82, 1997. Zbl0877.53001
  7. [7] R. Miron and Gh. Atanasiu: “Compendium on the higher order Lagrange spaces”, Tensor, N.S., Vol. 53 (1993), pp. 39–57. Zbl0851.53012
  8. [8] R. Miron and Gh. Atanasiu: “Differential geometry of the k-osculator bundle”, Rev. Roum. Math. Pures Appl., Vol. 41 (3–4), (1996), pp. 205–236. Zbl0860.53049
  9. [9] R. Miron and M. Anastasiei: Vector bundles. Lagrange spaces. Applications to the theory of relativity, Ed. Academiei, Bucureşti, 1987. Zbl0616.53002
  10. [10] R. Miron and M. Anastasiei: The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Acad. Publ., 1994. Zbl0831.53001
  11. [11] M. Popescu: “Connections on Finsler bundles” (The second international workshop on diff.geom. and appl. 25–28 septembrie 1995, Constanţa). An. St. Univ. Ovidius Constanţa, Seria mat., Vol. III(2), (1995), pp. 97–101. 
  12. [12] P. Popescu: “On the geometry of relative tangent spaces”, Rev. Roum. Math. Pures Appl., Vol. 37(8), (1992), pp. 727–733. Zbl0778.53017
  13. [13] P. Popescu: “Almost Lie structures, derivations and R-curvature on relative tangent spaces”, Rev. Roum. Math. Pures Appl., Vol. 37(8), (1992), pp. 779–789. Zbl0774.53017
  14. [14] P. Popescu: On quasi-connections on fibered manifolds, New Developements in Diff. Geom., Vol. 350, Kluwer Academic Publ., 1996, pp. 343–352. Zbl0899.53012
  15. [15] P. Popescu: “Categories of modules with differentials”, Journal of Algebra, Vol. 185, (1996), pp. 50–73. http://dx.doi.org/10.1006/jabr.1996.0312 
  16. [16] M. Popescu and P. Popescu: “Geometric objects defined by almost Lie structures”, In: J.Kubarski, P. Urbanski and R. Wolak (Eds.): Lie Algebroids and Related Topics in Differential Geometry, Vol. 54, Banach Center Publ., 2001, pp. 217–233. Zbl1001.53011
  17. [17] P. Popescu and M. Popescu: “A general background of higher order geometry and induced objects on subspaces”, Balkan Journal of Differential Geometry and its Applications, Vol. 7(1), (2002), pp. 79–90. Zbl1054.53046
  18. [18] Y.-C. Wong: “Linear connections and quasi connections on a differentiable manifold”, Tôhoku Math J., Vol. 14, (1962), pp. 49–63. Zbl0114.13702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.