On higher order geometry on anchored vector bundles
Open Mathematics (2004)
- Volume: 2, Issue: 5, page 826-839
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topPaul Popescu. "On higher order geometry on anchored vector bundles." Open Mathematics 2.5 (2004): 826-839. <http://eudml.org/doc/268721>.
@article{PaulPopescu2004,
abstract = {Some geometric objects of higher order concerning extensions, semi-sprays, connections and Lagrange metrics are constructed using an anchored vector bundle.},
author = {Paul Popescu},
journal = {Open Mathematics},
keywords = {14R25; 44A15; 53C07; 53B15; 22A30; 70S05},
language = {eng},
number = {5},
pages = {826-839},
title = {On higher order geometry on anchored vector bundles},
url = {http://eudml.org/doc/268721},
volume = {2},
year = {2004},
}
TY - JOUR
AU - Paul Popescu
TI - On higher order geometry on anchored vector bundles
JO - Open Mathematics
PY - 2004
VL - 2
IS - 5
SP - 826
EP - 839
AB - Some geometric objects of higher order concerning extensions, semi-sprays, connections and Lagrange metrics are constructed using an anchored vector bundle.
LA - eng
KW - 14R25; 44A15; 53C07; 53B15; 22A30; 70S05
UR - http://eudml.org/doc/268721
ER -
References
top- [1] A. Bejancu: Vectorial Finsler connections and theory of Finsler subspaces, Seminar on Geometry and Topology, Timişoara, 1986.
- [2] M.B. Boyom: Anchored vector bundles and algebroids, arXiv:math.DG/0208012.
- [3] I. Bucataru: “Horizontal lift in the higher order geometry”, Publ. Math. Debrecen, Vol. 56(1–2), (2000), pp. 21–32. Zbl0992.53054
- [4] R.L. Fernandes: “Lie algebroids, holonomy and characteristic classes”, Adv. in Math., Vol. 70, (2002), pp. 119–179 (arXiv:math-DG 0007132). http://dx.doi.org/10.1006/aima.2001.2070 Zbl1007.22007
- [5] Frans Cantrijn and Bavo Langerock: “Generalised Connections over a Vector Bundle Map”, Diff. Geom. Appl., Vol. 18, (2003), pp. 295–317 (arXiv: math.DG/0201274). http://dx.doi.org/10.1016/S0926-2245(02)00164-X Zbl1036.53014
- [6] R. Miron: The Geometry of Higher Order Lagrange Spaces. Applications to Mechanics and Physics, Kluwer, Dordrecht, FTPH no 82, 1997. Zbl0877.53001
- [7] R. Miron and Gh. Atanasiu: “Compendium on the higher order Lagrange spaces”, Tensor, N.S., Vol. 53 (1993), pp. 39–57. Zbl0851.53012
- [8] R. Miron and Gh. Atanasiu: “Differential geometry of the k-osculator bundle”, Rev. Roum. Math. Pures Appl., Vol. 41 (3–4), (1996), pp. 205–236. Zbl0860.53049
- [9] R. Miron and M. Anastasiei: Vector bundles. Lagrange spaces. Applications to the theory of relativity, Ed. Academiei, Bucureşti, 1987. Zbl0616.53002
- [10] R. Miron and M. Anastasiei: The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Acad. Publ., 1994. Zbl0831.53001
- [11] M. Popescu: “Connections on Finsler bundles” (The second international workshop on diff.geom. and appl. 25–28 septembrie 1995, Constanţa). An. St. Univ. Ovidius Constanţa, Seria mat., Vol. III(2), (1995), pp. 97–101.
- [12] P. Popescu: “On the geometry of relative tangent spaces”, Rev. Roum. Math. Pures Appl., Vol. 37(8), (1992), pp. 727–733. Zbl0778.53017
- [13] P. Popescu: “Almost Lie structures, derivations and R-curvature on relative tangent spaces”, Rev. Roum. Math. Pures Appl., Vol. 37(8), (1992), pp. 779–789. Zbl0774.53017
- [14] P. Popescu: On quasi-connections on fibered manifolds, New Developements in Diff. Geom., Vol. 350, Kluwer Academic Publ., 1996, pp. 343–352. Zbl0899.53012
- [15] P. Popescu: “Categories of modules with differentials”, Journal of Algebra, Vol. 185, (1996), pp. 50–73. http://dx.doi.org/10.1006/jabr.1996.0312
- [16] M. Popescu and P. Popescu: “Geometric objects defined by almost Lie structures”, In: J.Kubarski, P. Urbanski and R. Wolak (Eds.): Lie Algebroids and Related Topics in Differential Geometry, Vol. 54, Banach Center Publ., 2001, pp. 217–233. Zbl1001.53011
- [17] P. Popescu and M. Popescu: “A general background of higher order geometry and induced objects on subspaces”, Balkan Journal of Differential Geometry and its Applications, Vol. 7(1), (2002), pp. 79–90. Zbl1054.53046
- [18] Y.-C. Wong: “Linear connections and quasi connections on a differentiable manifold”, Tôhoku Math J., Vol. 14, (1962), pp. 49–63. Zbl0114.13702
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.