# On the lattice of deductive systems of a BL-algebra

Open Mathematics (2003)

- Volume: 1, Issue: 2, page 221-237
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topDumitru Bu§neag, and Dana Piciu. "On the lattice of deductive systems of a BL-algebra." Open Mathematics 1.2 (2003): 221-237. <http://eudml.org/doc/268745>.

@article{DumitruBu2003,

abstract = {For a BL-algebra A we denote by Ds(A) the lattice of all deductive systems of A. The aim of this paper is to put in evidence new characterizations for the meet-irreducible elements on Ds(A). Hyperarchimedean BL-algebras, too, are characterized.},

author = {Dumitru Bu§neag, Dana Piciu},

journal = {Open Mathematics},

keywords = {03G10},

language = {eng},

number = {2},

pages = {221-237},

title = {On the lattice of deductive systems of a BL-algebra},

url = {http://eudml.org/doc/268745},

volume = {1},

year = {2003},

}

TY - JOUR

AU - Dumitru Bu§neag

AU - Dana Piciu

TI - On the lattice of deductive systems of a BL-algebra

JO - Open Mathematics

PY - 2003

VL - 1

IS - 2

SP - 221

EP - 237

AB - For a BL-algebra A we denote by Ds(A) the lattice of all deductive systems of A. The aim of this paper is to put in evidence new characterizations for the meet-irreducible elements on Ds(A). Hyperarchimedean BL-algebras, too, are characterized.

LA - eng

KW - 03G10

UR - http://eudml.org/doc/268745

ER -

## References

top- [1] R. Balbes and Ph. Dwinger: Distributive Lattices, University of Missouri Press, 1974.
- [2] D. Bu§neag and D. Piciu: “Meet-irreducible ideals in an MV-algebra”, Analele Universitąţii din Craiova, Seria Matematica-Informatica, Vol. XXVIII, (2001), pp. 110–119. Zbl1058.06014
- [3] D. Buşneag and D. Piciu: “On the lattice of ideals of an MV-algebra”, Scientiae Mathematicae Japonicae, Vol. 56, (2002), pp. 367–372. Zbl1019.06004
- [4] R. Cignoli, I.M.L. D'Ottaviano, D. Mundici: Algebraic foundation of many-valued reasoning, Kluwer Academic Publ., Dordrecht, 2000.
- [5] A. Diego: “Sur les algèbres de Hilbert”, In. Ed. Hermann: Collection de Logique Mathématique, Serie A, XXI, Paris, 1966. Zbl0144.00105
- [6] G. Grätzer: Lattice theory, W. H. Freeman and Company, San Francisco, 1979.
- [7] G. Georgescu and M. Ploščica: “Values and minimal spectrum of an algebraic lattice”, Math. Slovaca, Vol. 52, (2002), pp. 247–253. Zbl1008.06006
- [8] P. Hájek: Metamathematics of Fuzzy Logic, Kluwer Academic Publ., Dordrecht, 1998.
- [9] A. Iorgulescu: “Iséki algebras. Connections with BL-algebras”, to appear in Soft Computing. Zbl1075.06009
- [10] A. Di Nola, G. Georgescu, A. Iorgulescu: “Pseudo-BL-algebras”, to appear in Multiple Valued Logic. Zbl1028.06007
- [11] H. Rasiowa, An Algebraic Approach to Non-Classical Logics, PWN and North-Holland Publishing Company, 1974. Zbl0299.02069
- [12] E. Turunen: Mathematics Behind Fuzzy Logic, Physica-Verlag, 1999. Zbl0940.03029

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.