Values and minimal spectrum of an algebraic lattice

George Georgescu; Miroslav Ploščica

Mathematica Slovaca (2002)

  • Volume: 52, Issue: 3, page 247-253
  • ISSN: 0139-9918

How to cite

top

Georgescu, George, and Ploščica, Miroslav. "Values and minimal spectrum of an algebraic lattice." Mathematica Slovaca 52.3 (2002): 247-253. <http://eudml.org/doc/31884>.

@article{Georgescu2002,
author = {Georgescu, George, Ploščica, Miroslav},
journal = {Mathematica Slovaca},
keywords = {algebraic lattice; very large element; compactly generated lattice},
language = {eng},
number = {3},
pages = {247-253},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Values and minimal spectrum of an algebraic lattice},
url = {http://eudml.org/doc/31884},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Georgescu, George
AU - Ploščica, Miroslav
TI - Values and minimal spectrum of an algebraic lattice
JO - Mathematica Slovaca
PY - 2002
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 52
IS - 3
SP - 247
EP - 253
LA - eng
KW - algebraic lattice; very large element; compactly generated lattice
UR - http://eudml.org/doc/31884
ER -

References

top
  1. ANDERSON M.-FEIL T., Lattice-Ordered Groups, Reidel, Dordrecht, 1988. (1988) Zbl0636.06008MR0937703
  2. BIGARD A.-CONRAD P.-WOLFENSTEIN S., Compactly generated lattice-ordered groups, Math. Z. 107 (1968), 201-211. (1968) MR0236083
  3. CONRAD P.-MARTINEZ J., Very large subgroups of lattice-ordered groups, Comm. Algebra 18 (1990), 2063-2098. (1990) MR1063126
  4. CONRAD P.-MARTINEZ J., Complemented lattice-ordered groups, Indag. Math. (N.S.) 1 (1990), 281-298. (1990) Zbl0735.06006MR1075880
  5. DI NOLA A.-GEORGESCU G.-SESSA S., Closed ideals of MV-algebras, In: Advances in Contemporary Logic and Computer Science (W. A. Carnielli,I. M. L. D'Ottaviano, eds.), Contemp. Math. 235, Amer. Math. Soc, Providence, RI,1999, pp. 99-111. (1999) Zbl0937.06010MR1721208
  6. KEIMEL K., A unified theory of minimal prime ideals, Acta Math. Acad. Sci. Hungaricae 23 (1972), 51-69. (1972) Zbl0265.06016MR0318037
  7. MARTINEZ J., Archimedean lattices, Algebra Universalis 3 (1973), 247-260. (1973) Zbl0317.06004MR0349503
  8. SNODGRASS J. T.-TSINAKIS, C, Finite-valued algebraic lattices, Algebra Univeгsalis 30 (1993), 311-319. (1993) Zbl0806.06011MR1225870
  9. SNODGRASS J. T.- TSINAKIS, C, The finite basis theorem for relatively normal lattices, Algebra Universalis 33 (1995), 40-67. (1995) MR1303631

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.