Variation of the reduction type of elliptic curves under small base change with wild ramification
Open Mathematics (2003)
- Volume: 1, Issue: 4, page 510-560
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMasanari Kida. "Variation of the reduction type of elliptic curves under small base change with wild ramification." Open Mathematics 1.4 (2003): 510-560. <http://eudml.org/doc/268749>.
@article{MasanariKida2003,
abstract = {We study the variation of the reduction type of elliptic curves under base change. A complete description of the variation is given when the base field is the p-adic field and the base change is of small degree.},
author = {Masanari Kida},
journal = {Open Mathematics},
keywords = {11G07; 11S15; 14G20},
language = {eng},
number = {4},
pages = {510-560},
title = {Variation of the reduction type of elliptic curves under small base change with wild ramification},
url = {http://eudml.org/doc/268749},
volume = {1},
year = {2003},
}
TY - JOUR
AU - Masanari Kida
TI - Variation of the reduction type of elliptic curves under small base change with wild ramification
JO - Open Mathematics
PY - 2003
VL - 1
IS - 4
SP - 510
EP - 560
AB - We study the variation of the reduction type of elliptic curves under base change. A complete description of the variation is given when the base field is the p-adic field and the base change is of small degree.
LA - eng
KW - 11G07; 11S15; 14G20
UR - http://eudml.org/doc/268749
ER -
References
top- [1] Clemens Adelmann: The decomposition of primes in torsion point fields, Springer-Verlag, Berlin, 2001.
- [2] Pilar Bayer and Anna Rio: “Dyadic exercises for octahedral extensions”, J. Reine Angew. Math., Vol. 517, (1999), pp. 1–17. Zbl0941.12001
- [3] J.E. Cremona: Algorithms for modular elliptic curves, Cambridge University Press, Cambridge, second edition, 1997. Zbl0872.14041
- [4] Marcus du Sautoy and Ivan Fesenko: “Where the wild things are: ramification groups and the Nottingham group”, In: New horizons in pro-p groups. Birkhäuser Boston, Boston, MA, 2000, pp. 287–328. Zbl0976.20018
- [5] Jean-Marc Fontaine: “Groupes de ramification et représentations d'Artin”, Ann. Sci. École Norm. Sup. (4), Vol. 4, (1971), pp. 337–392. Zbl0232.12006
- [6] Helmut Hasse: “Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage”, Math. Z., Vol. 31, (1930), pp. 565–582. http://dx.doi.org/10.1007/BF01246435 Zbl56.0167.02
- [7] Luise-Charlotte Kappe and Bette Warren: “An elementary test for the Galois group of a quartic polynomial”, Amer. Math. Monthly, Vol. 96, (1989), pp. 133–137. http://dx.doi.org/10.2307/2323198 Zbl0702.11075
- [8] Masanari Kida: “Ramification in the division fields of an elliptic curve”, To appear in Abh. Math. Sem. Univ. Hamburg.
- [9] Masanari Kida; “Computing elliptic curves using KASH”, In: Arjeh M. Cohen, Xiao-Shan Gao, Nobuki Takayama, (Eds): Mathematical Software, World Scientific, 2002, pp. 250–260.
- [10] Alain Kraus: “Sur le défaut de semi-stabilité des courbes elliptiques à réduction additive”, Manuscripta Math., Vol. 69, (1990), pp. 353–385.
- [11] Pascual Llorente and Enric Nart: “Effective determination of the decomposition of the rational primes in a cubic field”, Proc. Amer. Math. Soc., Vol. 87, 1983, pp. 579–585. http://dx.doi.org/10.2307/2043339 Zbl0514.12003
- [12] Paul Lockhart, Michael Rosen, Joseph H. Silverman: “An upper bound for the conductor of an abelian variety”, J. Algebraic Geom., Vol. 2(1993), pp. 569–601. Zbl0816.14021
- [13] E. Maus: “Arithmetisch disjunkte Körper”, J. Reine Angew. Math., Vol. 226, (1967), pp. 184–203. Zbl0149.29403
- [14] Hirotada Naito: “Dihedral extensions of degree 8 over the rational p-adic fields”, Proc. Japan Acad. Ser. A Math. Sci., Vol. 71(1995), pp. 17–18. http://dx.doi.org/10.3792/pjaa.71.17 Zbl0839.11060
- [15] Hirotada Naito: “Local fields generated by trisection points of elliptic curves”, Sūrikaisekikenkyūsho Kōkyūroku, Vol. 971, (1996), pp. 153–159, Algebraic number theory and Fermat's problem (Japanese), Kyoto, 1995.
- [16] Hirotada Naito: “Local fields generated by 3-division points of elliptic curves”, Proc. Japan Acad. Ser. A Math. Sci., Vol. 78, (2002), pp. 173–178. Zbl1083.11039
- [17] Jürgen Neukirch: Algebraische Zahlentheorie, Springer-Verlag, Berlin, 1992.
- [18] Ioannis Papadopoulos: “Sur la classification de Néron des courbes elliptiques en caractéristique résiduelle 2 et 3”, J. Number Theory, Vol. 44, (1993), pp. 119–152. http://dx.doi.org/10.1006/jnth.1993.1040
- [19] Sebastian Pauli: “Factoring polynomials over local fields”, J. Symbolic Comput., Vol. 32, (2001), pp. 533–547. http://dx.doi.org/10.1006/jsco.2001.0493 Zbl1085.12500
- [20] Sebastian Pauli and Xavier-François Roblot: “On the computation of all extensions of a p-adic field of a given degree”, Math. Comp., Vol. 70, (2001), pp. 1641–1659 (electronic). http://dx.doi.org/10.1090/S0025-5718-01-01306-0 Zbl0981.11038
- [21] Jean-Pierre Serre: Corps locaux. Hermann, Paris, 1968. Deuxième édition, Publications de l'Université de Nancago, No. VIII.
- [22] Jean-Pierre Serre: “Propriétés galoisiennes des points d'ordre fini des courbes elliptiques”, Invent. Math., Vol. 15, (1972), pp. 259–331. http://dx.doi.org/10.1007/BF01405086 Zbl0235.14012
- [23] Jean-Pierre Serre and John Tate: “Good reduction of abelian varieties”, Ann. of Math. (2), Vol. 88, (1968), pp. 492–517. http://dx.doi.org/10.2307/1970722 Zbl0172.46101
- [24] Joseph H. Silverman: The arithmetic of elliptic curves, Springer-Verlag, New York, 1986. Zbl0585.14026
- [25] Joseph H. Silverman: Advanced topics in the arithmetic of elliptic curves, Springer-Verlag, New York, 1994. Zbl0911.14015
- [26] André Weil: “Exercices dyadiques”, Invent. Math., Vol. 27, (1974), pp. 1–22. http://dx.doi.org/10.1007/BF01389962 Zbl0307.12017
- [27] Masakazu Yamagishi: “On the number of Galois p-extensions of a local field”, Proc. Amer. Math. Soc., Vol. 123, (1995), pp. 2373–2380. http://dx.doi.org/10.2307/2161262 Zbl0830.11045
- [28] Sunao Yamamoto: “On a property of the Hasse's function in the ramification theory”, Mem. Fac. Sci. Kyushu Univ. Ser. A, Vol. 22, (1968), pp. 96–109. Zbl0229.12017
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.