Variation of the reduction type of elliptic curves under small base change with wild ramification

Masanari Kida

Open Mathematics (2003)

  • Volume: 1, Issue: 4, page 510-560
  • ISSN: 2391-5455

Abstract

top
We study the variation of the reduction type of elliptic curves under base change. A complete description of the variation is given when the base field is the p-adic field and the base change is of small degree.

How to cite

top

Masanari Kida. "Variation of the reduction type of elliptic curves under small base change with wild ramification." Open Mathematics 1.4 (2003): 510-560. <http://eudml.org/doc/268749>.

@article{MasanariKida2003,
abstract = {We study the variation of the reduction type of elliptic curves under base change. A complete description of the variation is given when the base field is the p-adic field and the base change is of small degree.},
author = {Masanari Kida},
journal = {Open Mathematics},
keywords = {11G07; 11S15; 14G20},
language = {eng},
number = {4},
pages = {510-560},
title = {Variation of the reduction type of elliptic curves under small base change with wild ramification},
url = {http://eudml.org/doc/268749},
volume = {1},
year = {2003},
}

TY - JOUR
AU - Masanari Kida
TI - Variation of the reduction type of elliptic curves under small base change with wild ramification
JO - Open Mathematics
PY - 2003
VL - 1
IS - 4
SP - 510
EP - 560
AB - We study the variation of the reduction type of elliptic curves under base change. A complete description of the variation is given when the base field is the p-adic field and the base change is of small degree.
LA - eng
KW - 11G07; 11S15; 14G20
UR - http://eudml.org/doc/268749
ER -

References

top
  1. [1] Clemens Adelmann: The decomposition of primes in torsion point fields, Springer-Verlag, Berlin, 2001. 
  2. [2] Pilar Bayer and Anna Rio: “Dyadic exercises for octahedral extensions”, J. Reine Angew. Math., Vol. 517, (1999), pp. 1–17. Zbl0941.12001
  3. [3] J.E. Cremona: Algorithms for modular elliptic curves, Cambridge University Press, Cambridge, second edition, 1997. Zbl0872.14041
  4. [4] Marcus du Sautoy and Ivan Fesenko: “Where the wild things are: ramification groups and the Nottingham group”, In: New horizons in pro-p groups. Birkhäuser Boston, Boston, MA, 2000, pp. 287–328. Zbl0976.20018
  5. [5] Jean-Marc Fontaine: “Groupes de ramification et représentations d'Artin”, Ann. Sci. École Norm. Sup. (4), Vol. 4, (1971), pp. 337–392. Zbl0232.12006
  6. [6] Helmut Hasse: “Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage”, Math. Z., Vol. 31, (1930), pp. 565–582. http://dx.doi.org/10.1007/BF01246435 Zbl56.0167.02
  7. [7] Luise-Charlotte Kappe and Bette Warren: “An elementary test for the Galois group of a quartic polynomial”, Amer. Math. Monthly, Vol. 96, (1989), pp. 133–137. http://dx.doi.org/10.2307/2323198 Zbl0702.11075
  8. [8] Masanari Kida: “Ramification in the division fields of an elliptic curve”, To appear in Abh. Math. Sem. Univ. Hamburg. 
  9. [9] Masanari Kida; “Computing elliptic curves using KASH”, In: Arjeh M. Cohen, Xiao-Shan Gao, Nobuki Takayama, (Eds): Mathematical Software, World Scientific, 2002, pp. 250–260. 
  10. [10] Alain Kraus: “Sur le défaut de semi-stabilité des courbes elliptiques à réduction additive”, Manuscripta Math., Vol. 69, (1990), pp. 353–385. 
  11. [11] Pascual Llorente and Enric Nart: “Effective determination of the decomposition of the rational primes in a cubic field”, Proc. Amer. Math. Soc., Vol. 87, 1983, pp. 579–585. http://dx.doi.org/10.2307/2043339 Zbl0514.12003
  12. [12] Paul Lockhart, Michael Rosen, Joseph H. Silverman: “An upper bound for the conductor of an abelian variety”, J. Algebraic Geom., Vol. 2(1993), pp. 569–601. Zbl0816.14021
  13. [13] E. Maus: “Arithmetisch disjunkte Körper”, J. Reine Angew. Math., Vol. 226, (1967), pp. 184–203. Zbl0149.29403
  14. [14] Hirotada Naito: “Dihedral extensions of degree 8 over the rational p-adic fields”, Proc. Japan Acad. Ser. A Math. Sci., Vol. 71(1995), pp. 17–18. http://dx.doi.org/10.3792/pjaa.71.17 Zbl0839.11060
  15. [15] Hirotada Naito: “Local fields generated by trisection points of elliptic curves”, Sūrikaisekikenkyūsho Kōkyūroku, Vol. 971, (1996), pp. 153–159, Algebraic number theory and Fermat's problem (Japanese), Kyoto, 1995. 
  16. [16] Hirotada Naito: “Local fields generated by 3-division points of elliptic curves”, Proc. Japan Acad. Ser. A Math. Sci., Vol. 78, (2002), pp. 173–178. Zbl1083.11039
  17. [17] Jürgen Neukirch: Algebraische Zahlentheorie, Springer-Verlag, Berlin, 1992. 
  18. [18] Ioannis Papadopoulos: “Sur la classification de Néron des courbes elliptiques en caractéristique résiduelle 2 et 3”, J. Number Theory, Vol. 44, (1993), pp. 119–152. http://dx.doi.org/10.1006/jnth.1993.1040 
  19. [19] Sebastian Pauli: “Factoring polynomials over local fields”, J. Symbolic Comput., Vol. 32, (2001), pp. 533–547. http://dx.doi.org/10.1006/jsco.2001.0493 Zbl1085.12500
  20. [20] Sebastian Pauli and Xavier-François Roblot: “On the computation of all extensions of a p-adic field of a given degree”, Math. Comp., Vol. 70, (2001), pp. 1641–1659 (electronic). http://dx.doi.org/10.1090/S0025-5718-01-01306-0 Zbl0981.11038
  21. [21] Jean-Pierre Serre: Corps locaux. Hermann, Paris, 1968. Deuxième édition, Publications de l'Université de Nancago, No. VIII. 
  22. [22] Jean-Pierre Serre: “Propriétés galoisiennes des points d'ordre fini des courbes elliptiques”, Invent. Math., Vol. 15, (1972), pp. 259–331. http://dx.doi.org/10.1007/BF01405086 Zbl0235.14012
  23. [23] Jean-Pierre Serre and John Tate: “Good reduction of abelian varieties”, Ann. of Math. (2), Vol. 88, (1968), pp. 492–517. http://dx.doi.org/10.2307/1970722 Zbl0172.46101
  24. [24] Joseph H. Silverman: The arithmetic of elliptic curves, Springer-Verlag, New York, 1986. Zbl0585.14026
  25. [25] Joseph H. Silverman: Advanced topics in the arithmetic of elliptic curves, Springer-Verlag, New York, 1994. Zbl0911.14015
  26. [26] André Weil: “Exercices dyadiques”, Invent. Math., Vol. 27, (1974), pp. 1–22. http://dx.doi.org/10.1007/BF01389962 Zbl0307.12017
  27. [27] Masakazu Yamagishi: “On the number of Galois p-extensions of a local field”, Proc. Amer. Math. Soc., Vol. 123, (1995), pp. 2373–2380. http://dx.doi.org/10.2307/2161262 Zbl0830.11045
  28. [28] Sunao Yamamoto: “On a property of the Hasse's function in the ramification theory”, Mem. Fac. Sci. Kyushu Univ. Ser. A, Vol. 22, (1968), pp. 96–109. Zbl0229.12017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.