Representation-finite triangular algebras form an open scheme

Stanisław Kasjan

Open Mathematics (2003)

  • Volume: 1, Issue: 1, page 97-107
  • ISSN: 2391-5455

Abstract

top
Let V be a valuation ring in an algebraically closed field K with the residue field R. Assume that A is a V-order such that the R-algebra Ā obtained from A by reduction modulo the radical of V is triangular and representation-finite. Then the K-algebra KA ≅ A ⊗V is again triangular and representation-finite. It follows by the van den Dries’s test that triangular representation-finite algebras form an open scheme.

How to cite

top

Stanisław Kasjan. "Representation-finite triangular algebras form an open scheme." Open Mathematics 1.1 (2003): 97-107. <http://eudml.org/doc/268752>.

@article{StanisławKasjan2003,
abstract = {Let V be a valuation ring in an algebraically closed field K with the residue field R. Assume that A is a V-order such that the R-algebra Ā obtained from A by reduction modulo the radical of V is triangular and representation-finite. Then the K-algebra KA ≅ A ⊗V is again triangular and representation-finite. It follows by the van den Dries’s test that triangular representation-finite algebras form an open scheme.},
author = {Stanisław Kasjan},
journal = {Open Mathematics},
keywords = {16G60; 16G30; 03C60},
language = {eng},
number = {1},
pages = {97-107},
title = {Representation-finite triangular algebras form an open scheme},
url = {http://eudml.org/doc/268752},
volume = {1},
year = {2003},
}

TY - JOUR
AU - Stanisław Kasjan
TI - Representation-finite triangular algebras form an open scheme
JO - Open Mathematics
PY - 2003
VL - 1
IS - 1
SP - 97
EP - 107
AB - Let V be a valuation ring in an algebraically closed field K with the residue field R. Assume that A is a V-order such that the R-algebra Ā obtained from A by reduction modulo the radical of V is triangular and representation-finite. Then the K-algebra KA ≅ A ⊗V is again triangular and representation-finite. It follows by the van den Dries’s test that triangular representation-finite algebras form an open scheme.
LA - eng
KW - 16G60; 16G30; 03C60
UR - http://eudml.org/doc/268752
ER -

References

top
  1. [1] I. Assem, D. Simson and A. Skowroński, “Elements of Representation Theory of Associative Algebras”, Vol I: Techniques of Representation Theory, London Math. Soc. Student Texts, Cambridge University Press, Cambridge, to appear. Zbl1092.16001
  2. [2] M. Auslander, I. Reiten and S. Smalø, “Representation theory of Artin algebras”, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, 1995. Zbl0834.16001
  3. [3] I. Assem and A. Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc., 56 (1988), 417–450. Zbl0617.16018
  4. [4] S. Balcerzyk and T. Józefiak, “Pierścienie przemienne”, Warszawa: Państwowe Wydawnictwo Naukowe (1985), English translation of the Chapters I–IV: “Commutative Noetherian and Krull rings”. PWN-Polish Scientific Publishers, Warsaw. Chichester: Ellis Harwood Limited; New York etc.: Halsted Press. (1989). 
  5. [5] K. Bongartz, Zykellose Algebren sind nicht zügellos. Representation theory II, Proc. 2nd Int. Conf., Ottawa 1979, Lect. Notes Math. 832, (1980) 97–102. 
  6. [6] K. Bongartz, A criterion for finite representation type, Math. Ann. 269 (1984), 1–12. http://dx.doi.org/10.1007/BF01455993 Zbl0552.16012
  7. [7] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982), 331–378. http://dx.doi.org/10.1007/BF01396624 Zbl0482.16026
  8. [8] O. Bretcher and P. Gabriel, The standard form of a representation-finite algebra, Bull. Soc. Math. France 111 (1983), 21–40. 
  9. [9] Ch. W. Curtis and I. Reiner, “Methods of Representation Theory”, Vol. I, Wiley Classics Library Edition, New York, 1990. 
  10. [10] H. Ebbinghaus and J. Flum, “Finite Model Theory”, Perspectives in Mathematical Logic. Berlin: Springer-Verlag 1995. Zbl0841.03014
  11. [11] A. Ehrenfeucht, An application of games to the completness problem for formalized theories, Fund. Math. 49, 1961, 129–141. Zbl0096.24303
  12. [12] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math. 6 (1972), 71–102. http://dx.doi.org/10.1007/BF01298413 
  13. [13] P. Gariel, Finite representation type is open. in “Representations of algebras”, Lecture Notes in Math. 488, Springer-Verlag, Berlin, Heidelberg and New-York (1975) 132–155. 
  14. [14] P. Gabriel, The universal cover of a representation-finite algebra, in: Lecture Notes in Math. 903, Springer-Verlag, Berlin, Heidelberg and New-York (1981), 68–105. 
  15. [15] Ch. Jensen and H. Lenzing, Homological dimension and representation type of algebras under base field extension, Manuscripta Math., 39, 1–13 (1982). http://dx.doi.org/10.1007/BF01312441 Zbl0498.16023
  16. [16] Ch. Jensen and H. Lenzing, “Model Theoretic Algebra: with particular emphasis on fields, rings, modules”, Algebra, Logic and Applications, 2. Gordon and Breach Science Publishers, New York, 1989. Zbl0728.03026
  17. [17] S. Kasjan, On the problem of axiomatization of tame representation type, Fundamenta Mathematicae 171 (2002), 53–67 http://dx.doi.org/10.4064/fm171-1-3 Zbl0997.16008
  18. [18] S. Kasjan, Representation-directed algebras form an open scheme, Colloq. Math. 93 (2002), 237–250. Zbl1023.16014
  19. [19] H. Kraft, Geometric methods in representation theory, in: Representations of algebras, 3rd int. Conf., Puebla/Mexico 1980, Lect. Notes Math. 944, 180–258 (1982). 
  20. [20] R. Martinez-Villa and J.A. de la Peña, The universal cover of a quiver with relations, J. Pure. Appl. Algebra 30 (1983), 277–292. http://dx.doi.org/10.1016/0022-4049(83)90062-2 Zbl0522.16028
  21. [21] B. Poonen, Maximally complete fields, Enseign. Math. 39 (1993), 87–106. Zbl0807.12006
  22. [22] A. Schrijver, “Theory of Linear And Integer Programming”, Wiley-Interscience Series in Discrete Mathematics. A Wiley-Interscience Publication. Chichester: John Wiley & Sons Ltd. 1986. 
  23. [23] L. van den Dries, Some applications of a model theoretic fact to (semi-) algebraic geometry, Nederl. Akad. Indag. Math., 44 (1982), 397–401. Zbl0538.14017
  24. [24] H. Weyl, The elementary theory of convex polyhedra. in: Contrib. Theory of Games, Ann. Math. Studies 24, (1950) 3–18. Zbl0041.25401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.