The generalized de Rham-Hodge theory aspects of Delsarte-Darboux type transformations in multidimension

Anatoliy Samoilenko; Yarema Prykarpatsky; Anatoliy Prykarpatsky

Open Mathematics (2005)

  • Volume: 3, Issue: 3, page 529-557
  • ISSN: 2391-5455

Abstract

top
The differential-geometric and topological structure of Delsarte transmutation operators and their associated Gelfand-Levitan-Marchenko type eqautions are studied along with classical Dirac type operator and its multidimensional affine extension, related with selfdual Yang-Mills eqautions. The construction of soliton-like solutions to the related set of nonlinear dynamical system is discussed.

How to cite

top

Anatoliy Samoilenko, Yarema Prykarpatsky, and Anatoliy Prykarpatsky. "The generalized de Rham-Hodge theory aspects of Delsarte-Darboux type transformations in multidimension." Open Mathematics 3.3 (2005): 529-557. <http://eudml.org/doc/268767>.

@article{AnatoliySamoilenko2005,
abstract = {The differential-geometric and topological structure of Delsarte transmutation operators and their associated Gelfand-Levitan-Marchenko type eqautions are studied along with classical Dirac type operator and its multidimensional affine extension, related with selfdual Yang-Mills eqautions. The construction of soliton-like solutions to the related set of nonlinear dynamical system is discussed.},
author = {Anatoliy Samoilenko, Yarema Prykarpatsky, Anatoliy Prykarpatsky},
journal = {Open Mathematics},
keywords = {34A30; 34B05; 34B15},
language = {eng},
number = {3},
pages = {529-557},
title = {The generalized de Rham-Hodge theory aspects of Delsarte-Darboux type transformations in multidimension},
url = {http://eudml.org/doc/268767},
volume = {3},
year = {2005},
}

TY - JOUR
AU - Anatoliy Samoilenko
AU - Yarema Prykarpatsky
AU - Anatoliy Prykarpatsky
TI - The generalized de Rham-Hodge theory aspects of Delsarte-Darboux type transformations in multidimension
JO - Open Mathematics
PY - 2005
VL - 3
IS - 3
SP - 529
EP - 557
AB - The differential-geometric and topological structure of Delsarte transmutation operators and their associated Gelfand-Levitan-Marchenko type eqautions are studied along with classical Dirac type operator and its multidimensional affine extension, related with selfdual Yang-Mills eqautions. The construction of soliton-like solutions to the related set of nonlinear dynamical system is discussed.
LA - eng
KW - 34A30; 34B05; 34B15
UR - http://eudml.org/doc/268767
ER -

References

top
  1. [1] J. Delsarte: “Sur certaines transformations fonctionelles relative aux equations lineaires aux derives partielles du second ordre”, C.R. Acad. Sci. Paris, Vol. 206, (1938), pp. 178–182. 
  2. [2] J. Delsarte and J. Lions: “Transmutations d'operateurs differentielles dans le domain complex”, Comment. Math. Helv., Vol. 52, (1957), pp. 113–128. Zbl0080.29501
  3. [3] I.V. Skrypnik: “Periods of A-closed forms”, Proceedings of the USSR Academy of Sciences, Vol. 160(4), (1965), pp. 772–773 (in Russian). 
  4. [4] I.V. Skrypnik: “A harmonic fields with peculiarities”, Ukr. Math. Journal., Vol. 17(4), (1965), pp. 130–133 (in Russian). 
  5. [5] I.V. Skrypnik: “The generalized De Rham theorem”, Proceed. of UkrSSR Acad. of Sci., Vol. 1, (1965), pp. 18–19 (in Ukrainian). 
  6. [6] I.V. Skrypnik: “A harmonic forms on a compact Riemannian space”, Proceed. of UkrSSR Acad. of Sci., Vol. 2, p. 174–175 (in Ukrainian). 
  7. [7] Y.B. Lopatynski: “On harmonic fields on Riemannian manifolds”, Ukr. Math. Journal, Vol. 2, (1950), pp. 56–60 (in Russian). 
  8. [8] S.S. Chern: Complex manifolds, Chicago University Publ., USA, 1956. Zbl0074.30301
  9. [9] L.D. Faddeev: “Quantum inverse scattering problem. II”, In: Modern problems of mathematics, Vol. 3, M: VINITI Publ., 1974, pp. 93–180 (in Russian). 
  10. [10] L.D. Faddeev and L.A. Takhtadjyan Hamiltonian approach to soliton theory, Nauka, Moscow, 1986 (in Russian). 
  11. [11] R.G. Newton: Scattering Theory of Waves and Particles, 2nd ed., Dover Publications, Paperback, 2002. Zbl1079.81001
  12. [12] R.G. Newton: Inverse Schrödinger Scattering in Three Dimensions, Texts and Monographs in Physics, Springer-Verlag, 1990. 
  13. [13] S.P. Novikov (Ed.): Theory of solitons, Moscow, Nauka Publ., 1980, (in Russian). 
  14. [14] Yu.M. Berezansky: Eigenfunctions expansions related with selfadjoint operators, Nauk. Dumka Publ, Kiev, 1965 (in Russian). 
  15. [15] F.A. Berezin and M.A. Shubin: Schrödinger equation, Moscow University Publisher, Moscow, 1983 (in Russian). 
  16. [16] A.L. Bukhgeim: Volterra equations and inverse problems, Nauka, Moscow, 1983, (in Russian). 
  17. [17] V.B. Matveev and M.I. Salle: Darboux-Bäcklund transformations and applications, Springer, NY, 1993. 
  18. [18] L.P. Nizhnik: Inverse scattering problems for hyperbolic equations, Nauk. Dumka Publ., Kiev, 1991 (in Russian). Zbl0791.35142
  19. [19] L.P. Nizhnik and M.D. Pochynaiko: “The integration of a spatially two-dimensional Schrödinger equation by the inverse problem method”, Func. Anal. and Appl., Vol. 16(1), (1982), pp. 80–82 (in Russian). 
  20. [20] I.C. Gokhberg and M.G. Krein: Theory of Volterna operators in Hilbert spaces and its applications, Nauka, Moscow, 1967 (in Russian). 
  21. [21] Ya.V. Mykytiuk: “Factorization of Fredholmian operators”, Mathematical Studii, Proceedings of Lviv Mathematical Society, Vol. 20(2), (2003), pp. 185–199 (in Ukrainian). 
  22. [22] A.M. Samoilenko, Y.A. Prykarpatsky and V.G. Samoylenko: “The structure of Darboux-type binary transformations and their applications in soliton theory”, Ukr. Mat. Zhurnal, Vol. 55(12), (2003), pp. 1704–1723 (in Ukrainian). 
  23. [23] Y.A. Prykarpatsky, A.M. Samoilenko and A.K. Prykarpatsky: De Rham-Hodge theory. A survey of the spectral and differential geometric aspects of the De Rham-Hodge theory related with Delsarte transmutation operators in multidimension and its applications to spectral and soliton problems. Part 1, //lanl-arXiv:math-ph/0406062 v 1, 8 April 2004. Zbl1093.58012
  24. [24] A.K. Prykarpatsky, A.M. Samoilenko and Y.A. Prykarpatsky: “The multidimensional Delsarte transmutation operators, their differential-geometric structure and applications. Part. 1”, Opuscula Mathematica, Vol. 23, (2003), pp. 71–80, /arXiv:math-ph/0403054 v1 29 March 2004. Zbl1101.35003
  25. [25] J. Golenia, Y.A. Prykarpatsky, A.M. Samoilenko and A.K. Prykarpatsky: “The general differential-geometric structure of multidimensional Delsarte transmutation operators in parametric functional spaces and their applications in soliton theory, Part 2.”, Opuscula Mathematica, Vol. 24, (2004), /arXiv: math-ph/0403056 v 1 29 March 2004. Zbl1102.35006
  26. [26] A.M. Samoilenko and Y.A. Prykarpatsky: Algebraic-analytic aspects of completely integrable dynamical systems and their perturbations, Vol. 41, NAS, Inst. Mathem. Publisher, Kiev, 2002 (in Ukrainian). 
  27. [27] Y.A. Prykarpatsky, A.M. Samoilenko, A.K. Prykarpatsky and V.Hr. Samoylenko: The Delsarte-Darboux type binary transformations and their differenetial-geometric and operator staructure, arXiv: math-ph/0403055 v 1 29 March 2004. 
  28. [28] J.C.C. Nimmo: “Darboux tarnsformations from reductions of the KP-hierarchy”, Preprint of the Dept. of Mathem. at the University of Glasgow, November 8, 2002, p. 11. 
  29. [29] A.K. Prykarpatsky and I.V. Mykytiuk: Algebraic integrability of nonlinear dynamical systems on manifolds: classical and quantum aspects, Kluwer Acad. Publishers, The Netherlands, 1998. Zbl0937.37055
  30. [30] C. Godbillon: Geometrie differentielle et mechanique analytique, Paris, Hermann, 1969. Zbl0174.24602
  31. [31] R. Teleman: Elemente de topologie si varietati diferentiabile, Bucuresti Publ., Romania, 1964. 
  32. [32] G. De Rham: Varietes differentielles, Hermann, Paris, 1955. 
  33. [33] G. De Rham: “Sur la theorie des formes differentielles harmoniques”, Ann. Univ. Grenoble, Vol. 22, (1946), pp. 135–152. Zbl0063.06482
  34. [34] F. Warner: Foundations of differential manifolds and Lie groups, Academic Press, NY, 1971. Zbl0241.58001
  35. [35] N. Danford and J.T. Schwartz: Linear operators, Vol. 2, InterSci. Publ., NY, 1963. 
  36. [36] B.N. Datta and D.R. Sarkissian: “Feedback control in distributed parameter gyroscopic systems: a solution of the partial eigenvalue assignment problem”, Mechanical systems and Signal Processing, Vol. 16(1), (2002), pp. 3–17. http://dx.doi.org/10.1006/mssp.2001.1444 
  37. [37] I.M. Gelfand and G.E. Shilov: Generalized functions and actions upon them, 2nd ed., Nauka Publisher, Moscow, 1959 (in Russian). 
  38. [38] S.P. Novikov (Ed.): Theory of solitons, Nauka Publ., Moscow, 1980 (in Russian). 
  39. [39] M.D. Pochynaiko and Yu.M. Sydorenko: “Integrating some (2+1)-dimensional integrable systems by methods of inverse scattering problem and binary Darboux transformations”, Matematychni studii, Vol. 20, (2003), pp. 119–132. 
  40. [40] V.E. Zakharov and A.B. Shabat: “A scheme of integration of nonlinear equations of mathematical physics via the inverse scattering problem”, Part 1, Func. Anal. and it Appl., Vol. 8(3), (1974), pp. 43–53; Part 2, Vol. 13(3), (1979), pp. 13–32 (in Russian). 
  41. [41] B.G. Konopelchenko: “On the integrable equations and degenerate dispersiopn laws in multidimensional soaces”, J. Phys. A: Math. and Gen., Vol. 16, (1983), pp. L311-L316. http://dx.doi.org/10.1088/0305-4470/16/9/006 
  42. [42] V.E. Zakharov: “Integrable systems in multidimensional spaces”, Lect. Notes in Phys., Vol. 153, (1982), pp. 190–216. http://dx.doi.org/10.1007/3-540-11192-1_38 
  43. [43] V.E. Zakharov and S.V. Manakov: “On a generalization of the inverse scattering problem”, Theoret. Mathem. Physics, Vol. 27(3), (1976), pp. 283–287. 
  44. [44] D. Levi, L. Pilloni and P.M. Santini: “Bäcklund transformations for nonlinear evolution equations in (2+1)-dimensions”, Phys. Lett A., Vol. 81(8), (1981), pp. 419–423. http://dx.doi.org/10.1016/0375-9601(81)90401-1 
  45. [45] Liu Wen: Darboux transformations for a Lax integrable systems in 2n-dimensions, arXive:solve-int/9605002 v1 15 May 1996. 
  46. [46] C.H. Gu: Generalized self-dual Yang-Mills flows, explicit solutions and reductions. Acta Applicandae Mathem., Vol. 39, (1995), pp. 349–360. http://dx.doi.org/10.1007/BF00994642 Zbl0838.58016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.