On the apostol-bernoulli polynomials

Qiu-Ming Luo

Open Mathematics (2004)

  • Volume: 2, Issue: 4, page 509-515
  • ISSN: 2391-5455

Abstract

top
In the present paper, we obtain two new formulas of the Apostol-Bernoulli polynomials (see On the Lerch Zeta function. Pacific J. Math., 1 (1951), 161–167.), using the Gaussian hypergeometric functions and Hurwitz Zeta functions respectively, and give certain special cases and applications.

How to cite

top

Qiu-Ming Luo. "On the apostol-bernoulli polynomials." Open Mathematics 2.4 (2004): 509-515. <http://eudml.org/doc/268768>.

@article{Qiu2004,
abstract = {In the present paper, we obtain two new formulas of the Apostol-Bernoulli polynomials (see On the Lerch Zeta function. Pacific J. Math., 1 (1951), 161–167.), using the Gaussian hypergeometric functions and Hurwitz Zeta functions respectively, and give certain special cases and applications.},
author = {Qiu-Ming Luo},
journal = {Open Mathematics},
keywords = {Primary: 11B68; Secondary: 33C05, 11M35, 30E20},
language = {eng},
number = {4},
pages = {509-515},
title = {On the apostol-bernoulli polynomials},
url = {http://eudml.org/doc/268768},
volume = {2},
year = {2004},
}

TY - JOUR
AU - Qiu-Ming Luo
TI - On the apostol-bernoulli polynomials
JO - Open Mathematics
PY - 2004
VL - 2
IS - 4
SP - 509
EP - 515
AB - In the present paper, we obtain two new formulas of the Apostol-Bernoulli polynomials (see On the Lerch Zeta function. Pacific J. Math., 1 (1951), 161–167.), using the Gaussian hypergeometric functions and Hurwitz Zeta functions respectively, and give certain special cases and applications.
LA - eng
KW - Primary: 11B68; Secondary: 33C05, 11M35, 30E20
UR - http://eudml.org/doc/268768
ER -

References

top
  1. [1] T.M. Apostol: “On the Lerch Zeta function”, Pacific J. Math., Vol. 1, (1951), pp. 161–167. Zbl0043.07103
  2. [2] T.M. Apostol: Introduction to analytic number theory, Springer-Verlag, New York/Heidelberg/Berlin, 1976. 
  3. [3] L. Comtet: Advanced Combinatorics: The Art of Finite and Infinite Expansions, Reidel, Dordrecht/Boston, 1974. (Translated from the French by J.W. Nienhuys) Zbl0283.05001
  4. [4] H.M. Srivastava: “Some formulae for the Bernoulli and Euler polynomials at rational arguments”, Math. Proc. Cambridge Philos. Soc., Vol. 129, (2000), pp. 77–84. http://dx.doi.org/10.1017/S0305004100004412 Zbl0978.11004
  5. [5] H.M. Srivastava and Junesang Choi: Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001. Zbl1014.33001
  6. [6] H.M. Srivastava, P.G. Todorov: “An explicit formula for the generalized Bernoulli polynomials”, J. Math. Anal. Appl., Vol. 130, (1988), pp. 509–513. http://dx.doi.org/10.1016/0022-247X(88)90326-5 
  7. [7] H.W. Gould: “Explicit formulas for Bernoulli numbers” Amer. Math. Monthly, Vol. 79, (1972), pp. 44–51. http://dx.doi.org/10.2307/2978125 Zbl0227.10010
  8. [8] Qiu-Ming Luo: “The Bernoulli Polynomials Involving the Gaussian Hypergeometric Functions”, [submitted]. 
  9. [9] D. Cvijovic and J. Klinowski: “New formula for The Bernoulli and Euler polynomials at rational arguments”, Proc. Amer. Math. Soc., Vol. 123, (1995), pp. 1527–1535. http://dx.doi.org/10.2307/2161144 Zbl0827.11012
  10. [10] M. Abramowitz and I.A. Stegun (Eds): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 4th printing, Washington, 1965. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.