# On the riemann zeta-function and the divisor problem II

Open Mathematics (2005)

• Volume: 3, Issue: 2, page 203-214
• ISSN: 2391-5455

top

## Abstract

top
Let Δ(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of $\left|\zeta \left(\frac{1}{2}+it\right)\right|$ . If E *(t)=E(t)-2πΔ*(t/2π) with $\Delta *\left(x\right)+2\Delta \left(2x\right)-\frac{1}{2}\Delta \left(4x\right)$ , then we obtain ${\int }_{0}^{T}{\left|E*\left(t\right)\right|}^{5}dt{\ll }_{\epsilon }{T}^{2+\epsilon }$ and ${\int }_{0}^{T}{\left|E*\left(t\right)\right|}^{\frac{544}{75}}dt{\ll }_{\epsilon }{T}^{\frac{601}{225}+\epsilon }.$ It is also shown how bounds for moments of | E *(t)| lead to bounds for moments of $\left|\zeta \left(\frac{1}{2}+it\right)\right|$ .

## How to cite

top

Aleksandar Ivić. "On the riemann zeta-function and the divisor problem II." Open Mathematics 3.2 (2005): 203-214. <http://eudml.org/doc/268775>.

@article{AleksandarIvić2005,
abstract = {Let Δ(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of $\left| \{\zeta \left( \{\frac\{1\}\{2\} + it\} \right)\} \right|$ . If E *(t)=E(t)-2πΔ*(t/2π) with $\Delta *\left( x \right) + 2\Delta \left( \{2x\} \right) - \frac\{1\}\{2\}\Delta \left( \{4x\} \right)$ , then we obtain $\int \_0^T \{\left| \{E*\left( t \right)\} \right|^5 dt\} \ll \_\varepsilon T^\{2 + \varepsilon \}$ and $\int \_0^T \{\left| \{E*\left( t \right)\} \right|^\{\frac\{\{544\}\}\{\{75\}\}\} dt\} \ll \_\varepsilon T^\{\frac\{\{601\}\}\{\{225\}\} + \varepsilon \} .$ It is also shown how bounds for moments of | E *(t)| lead to bounds for moments of $\left| \{\zeta \left( \{\frac\{1\}\{2\} + it\} \right)\} \right|$ .},
author = {Aleksandar Ivić},
journal = {Open Mathematics},
keywords = {11N37; 11M06},
language = {eng},
number = {2},
pages = {203-214},
title = {On the riemann zeta-function and the divisor problem II},
url = {http://eudml.org/doc/268775},
volume = {3},
year = {2005},
}

TY - JOUR
AU - Aleksandar Ivić
TI - On the riemann zeta-function and the divisor problem II
JO - Open Mathematics
PY - 2005
VL - 3
IS - 2
SP - 203
EP - 214
AB - Let Δ(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of $\left| {\zeta \left( {\frac{1}{2} + it} \right)} \right|$ . If E *(t)=E(t)-2πΔ*(t/2π) with $\Delta *\left( x \right) + 2\Delta \left( {2x} \right) - \frac{1}{2}\Delta \left( {4x} \right)$ , then we obtain $\int _0^T {\left| {E*\left( t \right)} \right|^5 dt} \ll _\varepsilon T^{2 + \varepsilon }$ and $\int _0^T {\left| {E*\left( t \right)} \right|^{\frac{{544}}{{75}}} dt} \ll _\varepsilon T^{\frac{{601}}{{225}} + \varepsilon } .$ It is also shown how bounds for moments of | E *(t)| lead to bounds for moments of $\left| {\zeta \left( {\frac{1}{2} + it} \right)} \right|$ .
LA - eng
KW - 11N37; 11M06
UR - http://eudml.org/doc/268775
ER -

## References

top
1. [1] F.V. Atkinson: “The mean value of the Riemann zeta-function”, Acta Math., Vol. 81, (1949), pp. 353–376. http://dx.doi.org/10.1007/BF02395027 Zbl0036.18603
2. [2] D.R. Heath-Brown: “The twelfth power moment of the Riemann zeta-function”, Quart. J. Math. (Oxford), Vol. 29, (1978), pp. 443–462. Zbl0394.10020
3. [3] M.N. Huxley: Area, Lattice Points and Exponential Sums, Oxford Science Publications, Clarendon Press, Oxford, 1996.
4. [4] M.N. Huxley: “Exponential sums and lattice points III”, Proc. London Math. Soc., Vol. 387, (2003), pp. 591–609. http://dx.doi.org/10.1112/S0024611503014485 Zbl1065.11079
5. [5] A. Ivić: “Large values of the error term in the divisor problem”, Invent. Math., Vol. 71, (1983), pp. 513–520. http://dx.doi.org/10.1007/BF02095990 Zbl0489.10045
6. [6] A. Ivić: The Riemann zeta-function, John Wiley & Sons, New York, 1985; 2nd Ed., Dover, Mineola, New York, 2003.
7. [7] A. Ivić: The mean values of the Riemann zeta-function, LNs, Vol. 82, Tata Inst. of Fundamental Research, Bombay (distr. by Springer Verlag, Berlin etc.), 1991.
8. [8] A. Ivić: “On the Riemann zeta-function and the divisor problem”, Central European J. Math., Vol. 2 (4), (2004), pp. 1–15.
9. [9] A. Ivić and P. Sargos: “On the higher moments of the error term in the divisor problem”, to appear. Zbl1234.11129
10. [10] M. Jutila: “Riemann's zeta-function and the divisor problem”, Arkiv Mat., Vol. 21, (1983), pp. 75–96; “Riemann's zeta-function and the divisor problem II”, Arkiv Mat., Vol. 31, (1993), pp. 61–70. http://dx.doi.org/10.1007/BF02384301 Zbl0513.10040
11. [11] O. Robert and P. Sargos: “Three-dimensional exponential sums with monomials”, J. reine angew. Math., in press. Zbl1165.11067

## NotesEmbed?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.