Displaying similar documents to “On the riemann zeta-function and the divisor problem II”

On the riemann zeta-function and the divisor problem

Aleksandar Ivić (2004)

Open Mathematics

Similarity:

Let Δ(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of ς 1 2 + i t . If E * t = E t - 2 π Δ * t / 2 π with Δ * x = - Δ x + 2 Δ 2 x - 1 2 Δ 4 x , then we obtain 0 T E * t 4 d t e T 16 / 9 + ε . We also show how our method of proof yields the bound r = 1 R t r - G t r + G ς 1 2 + i t 2 d t 4 e T 2 + e G - 2 + R G 4 T ε , where T 1/5+ε≤G≪T, T

Some problems on mean values of the Riemann zeta-function

Aleksandar Ivić (1996)

Journal de théorie des nombres de Bordeaux

Similarity:

Several problems and results on mean values of ζ ( s ) are discussed. These include mean values of | ζ ( 1 2 + i t ) | and the fourth moment of | ζ ( σ + i t ) | for 1 / 2 < σ < 1 .

An explicit formula of Atkinson type for the product of the Riemann zeta-function and a Dirichlet polynomial

Hideaki Ishikawa, Kohji Matsumoto (2011)

Open Mathematics

Similarity:

We prove an explicit formula of Atkinson type for the error term in the asymptotic formula for the mean square of the product of the Riemann zeta-function and a Dirichlet polynomial. To deal with the case when coefficients of the Dirichlet polynomial are complex, we apply the idea of the first author in his study on mean values of Dirichlet L-functions.

On a question of A. Schinzel: Omega estimates for a special type of arithmetic functions

Manfred Kühleitner, Werner Nowak (2013)

Open Mathematics

Similarity:

The paper deals with lower bounds for the remainder term in asymptotics for a certain class of arithmetic functions. Typically, these are generated by a Dirichlet series of the form ζ 2(s)ζ(2s−1)ζ M(2s)H(s), where M is an arbitrary integer and H(s) has an Euler product which converges absolutely for R s > σ0, with some fixed σ0 < 1/2.

Bounds for double zeta-functions

Isao Kiuchi, Yoshio Tanigawa (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

In this paper we shall derive the order of magnitude for the double zeta-functionof Euler-Zagier type in the region 0 s j &lt; 1 ( j = 1 , 2 ) .First we prepare the Euler-Maclaurinsummation formula in a suitable form for our purpose, and then we apply the theory of doubleexponential sums of van der Corput’s type.