Classification of discrete derived categories
Grzegorz Bobiński; Christof Geiß; Andrzej Skowroński
Open Mathematics (2004)
- Volume: 2, Issue: 1, page 19-49
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topGrzegorz Bobiński, Christof Geiß, and Andrzej Skowroński. "Classification of discrete derived categories." Open Mathematics 2.1 (2004): 19-49. <http://eudml.org/doc/268791>.
@article{GrzegorzBobiński2004,
abstract = {The main aim of the paper is to classify the discrete derived categories of bounded complexes of modules over finite dimensional algebras.},
author = {Grzegorz Bobiński, Christof Geiß, Andrzej Skowroński},
journal = {Open Mathematics},
keywords = {18E30; 16G20; 16G60; 16G70},
language = {eng},
number = {1},
pages = {19-49},
title = {Classification of discrete derived categories},
url = {http://eudml.org/doc/268791},
volume = {2},
year = {2004},
}
TY - JOUR
AU - Grzegorz Bobiński
AU - Christof Geiß
AU - Andrzej Skowroński
TI - Classification of discrete derived categories
JO - Open Mathematics
PY - 2004
VL - 2
IS - 1
SP - 19
EP - 49
AB - The main aim of the paper is to classify the discrete derived categories of bounded complexes of modules over finite dimensional algebras.
LA - eng
KW - 18E30; 16G20; 16G60; 16G70
UR - http://eudml.org/doc/268791
ER -
References
top- [1] I. Assem and D. Happel: “Generalized tilted algebras of type ”, Comm. Algebra, Vol. 9, (1981), pp. 2101–2125. Zbl0481.16009
- [2] I. Assem and A. Skowroński: “Iterated tilted algebras of type ”, Math. Z., Vol. 195, (1987), pp. 269–290. http://dx.doi.org/10.1007/BF01166463 Zbl0601.16022
- [3] I. Assem and A. Skowroński: “Algebras with cycle-finite derived categories”, Math. Ann., Vol. 280, (1988), pp. 441–463. http://dx.doi.org/10.1007/BF01456336 Zbl0617.16017
- [4] M. Auslander, M. Platzeck and I. Reiten: “Coxeter functors without diagrams”, Trans. Amer. Math. Soc., Vol. 250, (1979), pp. 1–46. http://dx.doi.org/10.2307/1998978
- [5] M. Barot and J. A. de la Peña: “The Dynkin type of non-negative unit form”, Expo. Math., Vol. 17, (1999), pp. 339–348. Zbl1073.15531
- [6] K. Bongartz: “Tilted Algebras”, Lecture Notes in Math., Vol. 903, (1981), pp. 26–38.
- [7] K. Bongartz and P. Gabriel: “Covering spaces in representation theory”, Invent. Math., Vol. 65, (1981), pp. 331–378. http://dx.doi.org/10.1007/BF01396624 Zbl0482.16026
- [8] M. C. R. Butler and C. M. Ringel: “Auslander-Reiten sequences with few middle terms and applications to string algebras”, Comm. Algebra, Vol. 15, (1987), pp. 145–179. Zbl0612.16013
- [9] Ch. Geiß and J. A. de la Peña: “Auslander-Reiten components for clans”, Bol. Soc. Mat. Mexicana, Vol. 5, (1999), pp. 307–326. Zbl0959.16013
- [10] D. Happel: Triangulated categories in the representation theory of finite-dimensional algebras, London Math. Soc. Lecture Note Series, 1988. Zbl0635.16017
- [11] D. Happel: “Auslander-Reiten triangles in derived categories of finite-dimensional algebras”, Proc. Amer. Math. Soc., Vol. 112, (1991), pp. 641–648. http://dx.doi.org/10.2307/2048684 Zbl0736.16005
- [12] D. Happel and C. M. Ringel: “Tilted algebras”, Trans. Amer. Math. Soc., Vol. 274, (1982), pp. 399–443. http://dx.doi.org/10.2307/1999116 Zbl0503.16024
- [13] D. Hughes and J. Waschbüsch: “Trivial extensions of tilted algebras”, Proc. London Math. Soc., Vol. 46, (1983), pp. 347–364. Zbl0488.16021
- [14] B. Keller and D. Vossieck: “Aisles in derived, categories”, Bull. Soc. Math. Belg., Vol. 40, (1988), pp. 239–253. Zbl0671.18003
- [15] J. Nehring: “Polynomial growth trivial extensions of non-simply connected algebras”, Bull. Polish Acad. Sci. Math., Vol. 36, (1988), pp. 441–445. Zbl0777.16008
- [16] J. Rickard: “Morita theory for derived categories”, J. London Math. Soc., Vol. 39, (1989), pp. 436–456. Zbl0642.16034
- [17] C. M. Ringel: Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., 1984.
- [18] C. M. Ringel: “The repetitive algebra of a gentle algebra”, Bol. Soc. Mat. Mexicana, Vol. 3, (1997), pp. 235–253. Zbl0906.16005
- [19] A. Skowroński and J. Waschbüsch: “Representation-finite biserial algebras”, J. Reine Angew. Math., Vol. 345, (1983), pp. 172–181. Zbl0511.16021
- [20] J. L. Verdier: “Categories derivées, état 0”, Lecture Notes in Math., Vol. 569, (1977), pp. 262–331.
- [21] D. Vossieck: “The algebras with discrete derived category”, J. Algebra, Vol. 243, (2001), pp. 168–176. http://dx.doi.org/10.1006/jabr.2001.8783
- [22] H. Tachikawa and T. Wakamatsu: “Applications of reflection functors for selfinjective algebras”, Lecture Notes in Math., Vol. 1177, (1986), pp. 308–327. http://dx.doi.org/10.1007/BFb0075271 Zbl0626.16016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.