Classification of discrete derived categories

Grzegorz Bobiński; Christof Geiß; Andrzej Skowroński

Open Mathematics (2004)

  • Volume: 2, Issue: 1, page 19-49
  • ISSN: 2391-5455

Abstract

top
The main aim of the paper is to classify the discrete derived categories of bounded complexes of modules over finite dimensional algebras.

How to cite

top

Grzegorz Bobiński, Christof Geiß, and Andrzej Skowroński. "Classification of discrete derived categories." Open Mathematics 2.1 (2004): 19-49. <http://eudml.org/doc/268791>.

@article{GrzegorzBobiński2004,
abstract = {The main aim of the paper is to classify the discrete derived categories of bounded complexes of modules over finite dimensional algebras.},
author = {Grzegorz Bobiński, Christof Geiß, Andrzej Skowroński},
journal = {Open Mathematics},
keywords = {18E30; 16G20; 16G60; 16G70},
language = {eng},
number = {1},
pages = {19-49},
title = {Classification of discrete derived categories},
url = {http://eudml.org/doc/268791},
volume = {2},
year = {2004},
}

TY - JOUR
AU - Grzegorz Bobiński
AU - Christof Geiß
AU - Andrzej Skowroński
TI - Classification of discrete derived categories
JO - Open Mathematics
PY - 2004
VL - 2
IS - 1
SP - 19
EP - 49
AB - The main aim of the paper is to classify the discrete derived categories of bounded complexes of modules over finite dimensional algebras.
LA - eng
KW - 18E30; 16G20; 16G60; 16G70
UR - http://eudml.org/doc/268791
ER -

References

top
  1. [1] I. Assem and D. Happel: “Generalized tilted algebras of type 𝔸 n ”, Comm. Algebra, Vol. 9, (1981), pp. 2101–2125. Zbl0481.16009
  2. [2] I. Assem and A. Skowroński: “Iterated tilted algebras of type 𝔸 ˜ n ”, Math. Z., Vol. 195, (1987), pp. 269–290. http://dx.doi.org/10.1007/BF01166463 Zbl0601.16022
  3. [3] I. Assem and A. Skowroński: “Algebras with cycle-finite derived categories”, Math. Ann., Vol. 280, (1988), pp. 441–463. http://dx.doi.org/10.1007/BF01456336 Zbl0617.16017
  4. [4] M. Auslander, M. Platzeck and I. Reiten: “Coxeter functors without diagrams”, Trans. Amer. Math. Soc., Vol. 250, (1979), pp. 1–46. http://dx.doi.org/10.2307/1998978 
  5. [5] M. Barot and J. A. de la Peña: “The Dynkin type of non-negative unit form”, Expo. Math., Vol. 17, (1999), pp. 339–348. Zbl1073.15531
  6. [6] K. Bongartz: “Tilted Algebras”, Lecture Notes in Math., Vol. 903, (1981), pp. 26–38. 
  7. [7] K. Bongartz and P. Gabriel: “Covering spaces in representation theory”, Invent. Math., Vol. 65, (1981), pp. 331–378. http://dx.doi.org/10.1007/BF01396624 Zbl0482.16026
  8. [8] M. C. R. Butler and C. M. Ringel: “Auslander-Reiten sequences with few middle terms and applications to string algebras”, Comm. Algebra, Vol. 15, (1987), pp. 145–179. Zbl0612.16013
  9. [9] Ch. Geiß and J. A. de la Peña: “Auslander-Reiten components for clans”, Bol. Soc. Mat. Mexicana, Vol. 5, (1999), pp. 307–326. Zbl0959.16013
  10. [10] D. Happel: Triangulated categories in the representation theory of finite-dimensional algebras, London Math. Soc. Lecture Note Series, 1988. Zbl0635.16017
  11. [11] D. Happel: “Auslander-Reiten triangles in derived categories of finite-dimensional algebras”, Proc. Amer. Math. Soc., Vol. 112, (1991), pp. 641–648. http://dx.doi.org/10.2307/2048684 Zbl0736.16005
  12. [12] D. Happel and C. M. Ringel: “Tilted algebras”, Trans. Amer. Math. Soc., Vol. 274, (1982), pp. 399–443. http://dx.doi.org/10.2307/1999116 Zbl0503.16024
  13. [13] D. Hughes and J. Waschbüsch: “Trivial extensions of tilted algebras”, Proc. London Math. Soc., Vol. 46, (1983), pp. 347–364. Zbl0488.16021
  14. [14] B. Keller and D. Vossieck: “Aisles in derived, categories”, Bull. Soc. Math. Belg., Vol. 40, (1988), pp. 239–253. Zbl0671.18003
  15. [15] J. Nehring: “Polynomial growth trivial extensions of non-simply connected algebras”, Bull. Polish Acad. Sci. Math., Vol. 36, (1988), pp. 441–445. Zbl0777.16008
  16. [16] J. Rickard: “Morita theory for derived categories”, J. London Math. Soc., Vol. 39, (1989), pp. 436–456. Zbl0642.16034
  17. [17] C. M. Ringel: Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., 1984. 
  18. [18] C. M. Ringel: “The repetitive algebra of a gentle algebra”, Bol. Soc. Mat. Mexicana, Vol. 3, (1997), pp. 235–253. Zbl0906.16005
  19. [19] A. Skowroński and J. Waschbüsch: “Representation-finite biserial algebras”, J. Reine Angew. Math., Vol. 345, (1983), pp. 172–181. Zbl0511.16021
  20. [20] J. L. Verdier: “Categories derivées, état 0”, Lecture Notes in Math., Vol. 569, (1977), pp. 262–331. 
  21. [21] D. Vossieck: “The algebras with discrete derived category”, J. Algebra, Vol. 243, (2001), pp. 168–176. http://dx.doi.org/10.1006/jabr.2001.8783 
  22. [22] H. Tachikawa and T. Wakamatsu: “Applications of reflection functors for selfinjective algebras”, Lecture Notes in Math., Vol. 1177, (1986), pp. 308–327. http://dx.doi.org/10.1007/BFb0075271 Zbl0626.16016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.