Existence and nonexistence results for reaction-diffusion equations in product of cones

Abdallah Hamidi; Gennady Laptev

Open Mathematics (2003)

  • Volume: 1, Issue: 1, page 61-78
  • ISSN: 2391-5455

Abstract

top
Problems of existence and nonexistence of global nontrivial solutions to quasilinear evolution differential inequalities in a product of cones are investigated. The proofs of the nonexistence results are based on the test-function method developed, for the case of the whole space, by Mitidieri, Pohozaev, Tesei and Véron. The existence result is established using the method of supersolutions.

How to cite

top

Abdallah Hamidi, and Gennady Laptev. "Existence and nonexistence results for reaction-diffusion equations in product of cones." Open Mathematics 1.1 (2003): 61-78. <http://eudml.org/doc/268834>.

@article{AbdallahHamidi2003,
abstract = {Problems of existence and nonexistence of global nontrivial solutions to quasilinear evolution differential inequalities in a product of cones are investigated. The proofs of the nonexistence results are based on the test-function method developed, for the case of the whole space, by Mitidieri, Pohozaev, Tesei and Véron. The existence result is established using the method of supersolutions.},
author = {Abdallah Hamidi, Gennady Laptev},
journal = {Open Mathematics},
keywords = {Primary 35G25; Secondary 35R45; 35K55; 35L70},
language = {eng},
number = {1},
pages = {61-78},
title = {Existence and nonexistence results for reaction-diffusion equations in product of cones},
url = {http://eudml.org/doc/268834},
volume = {1},
year = {2003},
}

TY - JOUR
AU - Abdallah Hamidi
AU - Gennady Laptev
TI - Existence and nonexistence results for reaction-diffusion equations in product of cones
JO - Open Mathematics
PY - 2003
VL - 1
IS - 1
SP - 61
EP - 78
AB - Problems of existence and nonexistence of global nontrivial solutions to quasilinear evolution differential inequalities in a product of cones are investigated. The proofs of the nonexistence results are based on the test-function method developed, for the case of the whole space, by Mitidieri, Pohozaev, Tesei and Véron. The existence result is established using the method of supersolutions.
LA - eng
KW - Primary 35G25; Secondary 35R45; 35K55; 35L70
UR - http://eudml.org/doc/268834
ER -

References

top
  1. [1] C. Bandle, H.A. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains, Trans. Amer. Math. Soc., Vol. 316 (1989), 595–622. http://dx.doi.org/10.2307/2001363 Zbl0693.35081
  2. [2] C. Bandle, H.A. Levine, Fujita type results for convective-like reaction-diffusion equations in exterior domains, Z. Angew. Math. Phys., Vol 40 (1989), 665–676. http://dx.doi.org/10.1007/BF00945001 Zbl0697.76099
  3. [3] C. Bandle, M. Essen, On positive solutions of Emden equations in cone-like domains, Arch. Rational Mech. Anal., Vol. 112 (1990), 319–338. http://dx.doi.org/10.1007/BF02384077 Zbl0727.35051
  4. [4] K. Deng, H.A. Levine, The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl., Vol. 243 (2000), 85–126. http://dx.doi.org/10.1006/jmaa.1999.6663 
  5. [5] H. Egnell, Positive solutions of semilinear equations in cones, Trans. Amer. Math. Soc., Vol. 330 (1992), 191–201. http://dx.doi.org/10.2307/2154160 Zbl0766.35014
  6. [6] N. Igbida, M. Kirane, Blowup for completely coupled Fujita type reaction-diffusion system, Collocuim Mathematicum, Vol. 92 (2002), 87–96. http://dx.doi.org/10.4064/cm92-1-8 Zbl0988.35026
  7. [7] R. Labbas, M. Moussaoui, M. Najmi, Singular behavior of the Dirichlet problem in Hlder spaces of the solutions to the Dirichlet problem in a cone, Rend. Ist. Mat. Univ. Trieste, 30, No. 1–2, (1998), 155–179. Zbl0952.35020
  8. [8] G.G. Laptev, The absence of global positive solutions of systems of semilinear elliptic inequalities in cones, Russian Acad. Sci. Izv. Math., Vol. 64 (2000), 108–124. Zbl1013.35041
  9. [9] G.G. Laptev, On the absence of solutions to a class of singular semilinear differential inequalities, Proc. Steklov Inst. Math., Vol. 232 (2001), 223–235. 
  10. [10] G.G. Laptev, Nonexistence of solutions to semilinear parabolic inequalities in cones, Mat. Sb., Vol. 192 (2001), 51–70. 
  11. [11] G.G. Laptev, Some nonexistence results for higher-order evolution inequalities in cone-like domains, Electron. Res. Announc. Amer. Math. Soc., Vol. 7 (2001), 87–93. http://dx.doi.org/10.1090/S1079-6762-01-00098-1 Zbl0981.35104
  12. [12] G.G. Laptev, Nonexistence of solutions for parabolic inequalities in unbounded cone-like domains via the test function method, J. Evolution Equations. 2002 (in press) Zbl1137.35396
  13. [13] G.G. Laptev, Nonexistence results for higher-order evolution partial differential inequalities, Proc. Amer. Math. Soc. 2002 (in press). 
  14. [14] H.A. Levine, The role of critical exponents in blow-up theorems, SIAM Rev., Vol. 32 (1990), 262–288. http://dx.doi.org/10.1137/1032046 Zbl0706.35008
  15. [15] H.A. Levine, P. Meier, A blowup result for the critical exponent in cones, Israel J. Math., Vol. 67 (1989), 1–7. Zbl0696.35013
  16. [16] H.A. Levine, P. Meier, The value of the critical exponent for reaction-diffusion equations in cones, Arch. Rational Mech. Anal., Vol. 109 (1990), 73–80. http://dx.doi.org/10.1007/BF00377980 Zbl0702.35131
  17. [17] E. Mitidieri, S.I. Pohozaev, Nonexistence of global positive solutions to quasilinear elliptic inequalities, Dokl. Russ. Acad. Sci., Vol. 57 (1998), 250–253. 
  18. [18] E. Mitidieri, S.I. Pohozaev, Nonexistence of positive solutions for a system of quasilinear elliptic equations and inequalities in ℝn , Dokl. Russ. Acad. Sci., Vol. 59 (1999), 1351–1355. 
  19. [19] E. Mitidieri, S.I. Pohozaev, Nonexistence of positive solutions for quasilinear elliptic problems on ℝn , Proc. Steklov Inst. Math0., Vol. 227 (1999), 192–222. 
  20. [20] E. Mitidieri, S.I. Pohozaev, Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on ℝn , J. Evolution Equations, Vol. 1 (2001), 189–220. http://dx.doi.org/10.1007/PL00001368 Zbl0988.35095
  21. [21] E. Mitidieri, S.I. Pohozaev, Nonexistence of weak solutions for some degenerate and singular hyperbolic problems on ℝn , Proc. Steklov Inst. Math., Vol. 232 (2001), 240–259. Zbl1032.35138
  22. [22] E. Mitidieri, S.I. Pohozaev, A priori Estimates and Nonexistence of Solutions to Nonlinear Partial Differential Equations and Inequalities, Moscow, Nauka, 2001. (Proc. Steklov Inst. Math., Vol. 234). Zbl1074.35500
  23. [23] S. Ohta, A. Kaneko, Critical exponent of blowup for semilinear heat equation on a product domain, J. Fac. Sci. Univ. Tokyo. Sect. IA. Math., Vol. 40 (1993), 635–650. Zbl0799.35126
  24. [24] S.I. Pohozaev, Essential nonlinear capacities induced by differential operators, Dokl. Russ. Acad. Sci., Vol. 357 (1997), 592–594. 
  25. [25] S.I. Pohozaev, A. Tesei, Blow-up of nonnegative solutions to quasilinear parabolic inequalities, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., Vol. 11 (2000), 99–109. Zbl1007.35003
  26. [26] S.I. Pohozaev, A. Tesei, Critical exponents for the absence of solutions for systems of quasilinear parabolic inequalities, Differ. Uravn., Vol. 37 (2001), 521–528. 
  27. [27] S.I. Pohozaev, L. Veron, Blow-up results for nonlinear hyperbolic inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Vol. 29 (2000), 393–420. Zbl0965.35197
  28. [28] S.I. Pohozaev, L. Veron, Nonexistence results of solutions of semilinear differential inequalities on the Heisenberg group, Manuscripta math., Vol. 102 (2000), 85–99. http://dx.doi.org/10.1007/PL00005851 Zbl0964.35046
  29. [29] A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov and A.P. Mikhailov, Blow-up in Quasilinear Parabolic Equations, Nauka, Moscow, 1987 (in Russian). English translation: Walter de Gruyter, Berlin/New York, 1995. 
  30. [30] D. H. Sattinger, Topics in Stability and Bifurcation Theory, Lect. Notes Math., Vol. 309, Springer, New York, N. Y., 1973. Zbl0248.35003
  31. [31] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana U. Mtah. J. 21 (1972), 979–1000. http://dx.doi.org/10.1512/iumj.1972.21.21079 Zbl0223.35038
  32. [32] G. N. Watson, A treatise on the Theory of Bessel Functions, Cambridge University Press, London/New York, 1966. Zbl0174.36202
  33. [33] Qi Zhang, Blow-up results for nonlinear parabolic equations on manifolds, Duke Math. J., Vol. 97 (1999), 515–539. http://dx.doi.org/10.1215/S0012-7094-99-09719-3 Zbl0954.35029
  34. [34] Qi Zhang, The quantizing effect of potentials on the critial number of reaction-diffusion equations, J. Differential Equations, Vol. 170 (2001), 188–214. http://dx.doi.org/10.1006/jdeq.2000.3815 Zbl0973.35035
  35. [35] Qi Zhang, Global lower bound for the heat kernel of - Δ + c | x | 2 , Proc. Amer. Math. Soc., Vol. 129 (2001), 1105–1112. http://dx.doi.org/10.1090/S0002-9939-00-05757-9 Zbl0964.35024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.