Finiteness of the strong global dimension of radical square zero algebras

Otto Kerner; Andrzej Skowroński; Kunio Yamagata; Dan Zacharia

Open Mathematics (2004)

  • Volume: 2, Issue: 1, page 103-111
  • ISSN: 2391-5455

Abstract

top
The strong global dimension of a finite dimensional algebra A is the maximum of the width of indecomposable bounded differential complexes of finite dimensional projective A-modules. We prove that the strong global dimension of a finite dimensional radical square zero algebra A over an algebraically closed field is finite if and only if A is piecewise hereditary. Moreover, we discuss results concerning the finiteness of the strong global dimension of algebras and the related problem on the density of the push-down functors associated to the canonical Galois coverings of the trivial extensions of algebras by their repetitive algebras.

How to cite

top

Otto Kerner, et al. "Finiteness of the strong global dimension of radical square zero algebras." Open Mathematics 2.1 (2004): 103-111. <http://eudml.org/doc/268840>.

@article{OttoKerner2004,
abstract = {The strong global dimension of a finite dimensional algebra A is the maximum of the width of indecomposable bounded differential complexes of finite dimensional projective A-modules. We prove that the strong global dimension of a finite dimensional radical square zero algebra A over an algebraically closed field is finite if and only if A is piecewise hereditary. Moreover, we discuss results concerning the finiteness of the strong global dimension of algebras and the related problem on the density of the push-down functors associated to the canonical Galois coverings of the trivial extensions of algebras by their repetitive algebras.},
author = {Otto Kerner, Andrzej Skowroński, Kunio Yamagata, Dan Zacharia},
journal = {Open Mathematics},
keywords = {Primary 16D50; 16E10; 18E30; Secondary 16G10},
language = {eng},
number = {1},
pages = {103-111},
title = {Finiteness of the strong global dimension of radical square zero algebras},
url = {http://eudml.org/doc/268840},
volume = {2},
year = {2004},
}

TY - JOUR
AU - Otto Kerner
AU - Andrzej Skowroński
AU - Kunio Yamagata
AU - Dan Zacharia
TI - Finiteness of the strong global dimension of radical square zero algebras
JO - Open Mathematics
PY - 2004
VL - 2
IS - 1
SP - 103
EP - 111
AB - The strong global dimension of a finite dimensional algebra A is the maximum of the width of indecomposable bounded differential complexes of finite dimensional projective A-modules. We prove that the strong global dimension of a finite dimensional radical square zero algebra A over an algebraically closed field is finite if and only if A is piecewise hereditary. Moreover, we discuss results concerning the finiteness of the strong global dimension of algebras and the related problem on the density of the push-down functors associated to the canonical Galois coverings of the trivial extensions of algebras by their repetitive algebras.
LA - eng
KW - Primary 16D50; 16E10; 18E30; Secondary 16G10
UR - http://eudml.org/doc/268840
ER -

References

top
  1. [1] I. Assem, J. Nehring and A. Skowroński, “Domestic trivial extensions of simply connected algebras”, Tsukuba J. Math., Vol. 13, (1989), pp. 31–72. Zbl0686.16011
  2. [2] I. Assem and A. Skowroński, “Algebras with cycle-finite derived categories”, Math. Ann., Vol. 280, (1988), pp. 441–463. http://dx.doi.org/10.1007/BF01456336 Zbl0617.16017
  3. [3] I. Assem and A. Skowroński, “On tame repetitive algebras”, Fund. Math., Vol. 142, (1993), pp. 59–84. Zbl0833.16010
  4. [4] K. Bongartz and P. Gabriel, “Covering spaces in representations theory”, Invent. Math., Vol. 65, (1982), pp. 331–378. http://dx.doi.org/10.1007/BF01396624 Zbl0482.16026
  5. [5] P. Dowbor and A. Skowroński, “On Galois coverings of tame algebras”, Arch. Math., Vol. 44, (1985), pp. 522–529. http://dx.doi.org/10.1007/BF01193992 Zbl0576.16029
  6. [6] P. Dowbor and A. Skowroński, “Galois coverings of representation-infinite algebras”, Comment. Math. Helv., Vol. 62, (1987), pp. 311–337. Zbl0628.16019
  7. [7] K. Erdmann, O. Kerner and A. Skowroński, “Self-injective algebras of wild tilted type”, J. Pure Appl. Algebra, Vol. 149, (2000), pp. 127–176. http://dx.doi.org/10.1016/S0022-4049(00)00035-9 Zbl0994.16015
  8. [8] P. Gabriel, “The universal cover of a representation-finite algebra” In: Representations of Algebras, Lecture Notes in Math., Vol. 903, Springer, 1981, pp. 68–105. 
  9. [9] E.L. Green, “Graphs with relations, coverings and group graded algebras”, Trans. Amer. Math. Soc., Vol. 279, (1983), pp. 297–310. http://dx.doi.org/10.2307/1999386 Zbl0536.16001
  10. [10] D. Happel, “On the derived category of a finite dimensional algebra”, Comment. Math. Helv, Vol. 62, (1987), pp. 339–389. Zbl0626.16008
  11. [11] D. Happel, “A characterization of hereditary categories with tilting object”, Invent. Math., Vol. 144, (2001), pp. 381–398. http://dx.doi.org/10.1007/s002220100135 Zbl1015.18006
  12. [12] D. Happel, I. Reiten and S.O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc., Providence, Rhode Island, 1996. Zbl0849.16011
  13. [13] D. Happel, I. Reiten and S.O. Smalø, “Piecewise hereditary algebras”, Arch. Math., Vol. 66, (1996), pp. 182–186. http://dx.doi.org/10.1007/BF01195702 Zbl0865.16009
  14. [14] D. Happel, J. Rickard and A. Schofield, “Piecewise hereditary algebras”, Bull. London Math. Soc., Vol. 20, (1988), pp. 23–28. Zbl0638.16018
  15. [15] D. Hughes and J. Waschbüsch, “Trivial extensions of tilted algebras”, Proc. London Math. Soc., Vol. 46, (1983), pp. 347–364. Zbl0488.16021
  16. [16] H. Lenzing and A. Skowroński, “Selfinjective algebras of wild canonical type”, Colloq. Math., Vol. 96, (2003), pp. 245–275. http://dx.doi.org/10.4064/cm96-2-9 Zbl1050.16009
  17. [17] J. Nehring and A. Skowroński, “Polynomial growth trivial extensions of simply connected algebras”, Fund. Math., Vol. 132, (1989), pp. 117–134. Zbl0677.16008
  18. [18] C.M. Ringel, Tame algebras and integral guadratic forms, Lecture Notes in Math., Springer, Berlin, 1984. 
  19. [19] J. Schröer, “On the quiver with relations of a repetitive algebra”, Arch. Math., Vol. 72, (1999), pp. 426–432. http://dx.doi.org/10.1007/s000130050351 Zbl0937.16018
  20. [20] A. Skowroński, “Generalization of Yamagata’s theorem on trivial extensions”, Arch. Math., Vol. 48, (1987), pp. 68–76. http://dx.doi.org/10.1007/BF01196357 Zbl0634.16013
  21. [21] A. Skowroński, “On algebras with finite strong global dimension”, Bull. Polish. Acad. Sci., Vol. 35, (1987), pp. 539–547. Zbl0642.16023
  22. [22] A. Skowroński, “Tame quasi-tilted algebras”, J. Algebra, Vol. 203, (1998), pp. 470–490. http://dx.doi.org/10.1006/jabr.1997.7328 
  23. [23] K. Yamagata, “On algebras whose trivial extensions are of finite representation type”, In: Representations of Algebras, Lecture Notes in Math., Vol. 903, Springer, 1981, pp. 364–371. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.