# A simple proof of a result of Abramovich and Wickstead

Open Mathematics (2005)

- Volume: 3, Issue: 2, page 242-244
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topZafer Ercan. "A simple proof of a result of Abramovich and Wickstead." Open Mathematics 3.2 (2005): 242-244. <http://eudml.org/doc/268850>.

@article{ZaferErcan2005,

abstract = {The paper presents a simple proof of Proposition 8 of [2], based on a new and simple description of isometries between CD 0-spaces.},

author = {Zafer Ercan},

journal = {Open Mathematics},

keywords = {CD0-spaces; Riesz isomorphisms; MSC (2000); 54C35; 46E25; positive isometries},

language = {eng},

number = {2},

pages = {242-244},

title = {A simple proof of a result of Abramovich and Wickstead},

url = {http://eudml.org/doc/268850},

volume = {3},

year = {2005},

}

TY - JOUR

AU - Zafer Ercan

TI - A simple proof of a result of Abramovich and Wickstead

JO - Open Mathematics

PY - 2005

VL - 3

IS - 2

SP - 242

EP - 244

AB - The paper presents a simple proof of Proposition 8 of [2], based on a new and simple description of isometries between CD 0-spaces.

LA - eng

KW - CD0-spaces; Riesz isomorphisms; MSC (2000); 54C35; 46E25; positive isometries

UR - http://eudml.org/doc/268850

ER -

## References

top- [1] Y.A. Abramovich and A.W. Wickstead: “Remarkable classes of unitial AM-spaces”, J. of Math. Analysis and Appl., Vol. 180, (1993), pp. 398–411. http://dx.doi.org/10.1006/jmaa.1993.1408 Zbl0792.46004
- [2] Y.A. Abramovich and A.W. Wickstead: “A Banach-Stone Theorem for a New Class of Banach Spaces”, Indiana University Mathematical Journal, Vol. 45, (1996), pp. 709–720. Zbl0885.46014
- [3] C.D. Aliprantis and O. Burkinshaw: Positive operators, Academic Press, New York, London, 1985.
- [4] S. Alpay and Z. Ercan: “ CD 0(K, E) and CD w(K, E) spaces as Banach lattices”, Positivity, Vol. 3, (2000), pp. 213–225. http://dx.doi.org/10.1023/A:1009878527795
- [5] Z. Ercan: “A concrete desription of CD 0(K)-spacesas C(X)-spaces and its applications”, Proc. Amer. Math. Soc., Vol. 132, (2004), pp. 1761–1763. http://dx.doi.org/10.1090/S0002-9939-03-07235-6 Zbl1050.46022
- [6] V.G. Troitsky: “On CD 0(K)-spaces”, Vladikavkaz Mathematical Journal, Vo. 6(1), (2004), pp. 71–73. Zbl1096.46507

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.