Congruences, ideals and annihilators in standard QBCC-algebras

Radomír Halaš; Luboš Plojhar

Open Mathematics (2005)

  • Volume: 3, Issue: 1, page 83-97
  • ISSN: 2391-5455

Abstract

top
We characterize congruence lattices of standard QBCC-algebras and their connection with the congruence lattices of congruence kernels.

How to cite

top

Radomír Halaš, and Luboš Plojhar. "Congruences, ideals and annihilators in standard QBCC-algebras." Open Mathematics 3.1 (2005): 83-97. <http://eudml.org/doc/268853>.

@article{RadomírHalaš2005,
abstract = {We characterize congruence lattices of standard QBCC-algebras and their connection with the congruence lattices of congruence kernels.},
author = {Radomír Halaš, Luboš Plojhar},
journal = {Open Mathematics},
keywords = {06F35; 06A11; 03G25},
language = {eng},
number = {1},
pages = {83-97},
title = {Congruences, ideals and annihilators in standard QBCC-algebras},
url = {http://eudml.org/doc/268853},
volume = {3},
year = {2005},
}

TY - JOUR
AU - Radomír Halaš
AU - Luboš Plojhar
TI - Congruences, ideals and annihilators in standard QBCC-algebras
JO - Open Mathematics
PY - 2005
VL - 3
IS - 1
SP - 83
EP - 97
AB - We characterize congruence lattices of standard QBCC-algebras and their connection with the congruence lattices of congruence kernels.
LA - eng
KW - 06F35; 06A11; 03G25
UR - http://eudml.org/doc/268853
ER -

References

top
  1. [1] W.J. Blok and D.Pigozzi: Algebraizable logics, Memoirs of the American Math. Soc., Vol. 396, Providence, Rhode Island, 1989. Zbl0664.03042
  2. [2] W.A. Dudek: “The number of subalgebras of finite BCC-algebras”, Bull. of the Inst. of Math., Academia Sinica, Vol. 20(2), (1992), pp. 129–135. Zbl0770.06009
  3. [3] W.A. Dudek: “On subalgebras in Hilbert algebras”, Novi Sad J. Math., Vol. 29(2) (1999), pp. 181–192. Zbl1274.06067
  4. [4] W.A. Dudek: “Subalgebras in finite BCC-algebras, Bull. of the Inst. of Math., Academia Sinica, Vol. 28, (2000), pp. 201–206. Zbl0978.06014
  5. [5] I. Chajda and R. Halaš: “Pre-logics BCC-algebras”, Math. Slovaca, Vol. 52(2), (2002), pp. 157–175. Zbl1007.08003
  6. [6] R. Halas: “BCC-algebras inherited from posets”,Multiple Valued Logic, Vol.8, (2002), pp.223–235. http://dx.doi.org/10.1080/10236620215290 Zbl1032.06010
  7. [7] R. Halaš and J. Ort: “Standard QBCC-algebras”, Demonstratio Math., Vol. 36(1), (2003), pp. 1–10. Zbl1032.06009
  8. [8] R. Halaš and J. Ort: “QBCC-algebras inherited from qosets”, Math. Slovaca, Vol. 53(4), (2003), pp. 331–340. Zbl1072.06018
  9. [9] Y. Imai and K. Iséki: “On axiomatic system of propositional calculi”, XIV. Proc. Japan Acad., Vol. 42, (1966), pp. 19–22. http://dx.doi.org/10.3792/pja/1195522169 
  10. [10] Y. Komori: “The class of BCC-algebras is not a variety”, Math. Japon., Vol. 29, (1984), pp. 391–394. Zbl0553.03046
  11. [11] A. Wroński: “An algebraic motivation for BCK-algebras”, Math. Japon., Vol. 30, (1985), pp. 183–193. Zbl0569.03029
  12. [12] A. Wroński: “BCK-algebras do not form a variety”, Math. Japon., Vol. 28, (1983), pp. 211–213. Zbl0518.06014

NotesEmbed ?

top

You must be logged in to post comments.