Congruences, ideals and annihilators in standard QBCC-algebras

Radomír Halaš; Luboš Plojhar

Open Mathematics (2005)

  • Volume: 3, Issue: 1, page 83-97
  • ISSN: 2391-5455

Abstract

top
We characterize congruence lattices of standard QBCC-algebras and their connection with the congruence lattices of congruence kernels.

How to cite

top

Radomír Halaš, and Luboš Plojhar. "Congruences, ideals and annihilators in standard QBCC-algebras." Open Mathematics 3.1 (2005): 83-97. <http://eudml.org/doc/268853>.

@article{RadomírHalaš2005,
abstract = {We characterize congruence lattices of standard QBCC-algebras and their connection with the congruence lattices of congruence kernels.},
author = {Radomír Halaš, Luboš Plojhar},
journal = {Open Mathematics},
keywords = {06F35; 06A11; 03G25},
language = {eng},
number = {1},
pages = {83-97},
title = {Congruences, ideals and annihilators in standard QBCC-algebras},
url = {http://eudml.org/doc/268853},
volume = {3},
year = {2005},
}

TY - JOUR
AU - Radomír Halaš
AU - Luboš Plojhar
TI - Congruences, ideals and annihilators in standard QBCC-algebras
JO - Open Mathematics
PY - 2005
VL - 3
IS - 1
SP - 83
EP - 97
AB - We characterize congruence lattices of standard QBCC-algebras and their connection with the congruence lattices of congruence kernels.
LA - eng
KW - 06F35; 06A11; 03G25
UR - http://eudml.org/doc/268853
ER -

References

top
  1. [1] W.J. Blok and D.Pigozzi: Algebraizable logics, Memoirs of the American Math. Soc., Vol. 396, Providence, Rhode Island, 1989. Zbl0664.03042
  2. [2] W.A. Dudek: “The number of subalgebras of finite BCC-algebras”, Bull. of the Inst. of Math., Academia Sinica, Vol. 20(2), (1992), pp. 129–135. Zbl0770.06009
  3. [3] W.A. Dudek: “On subalgebras in Hilbert algebras”, Novi Sad J. Math., Vol. 29(2) (1999), pp. 181–192. Zbl1274.06067
  4. [4] W.A. Dudek: “Subalgebras in finite BCC-algebras, Bull. of the Inst. of Math., Academia Sinica, Vol. 28, (2000), pp. 201–206. Zbl0978.06014
  5. [5] I. Chajda and R. Halaš: “Pre-logics BCC-algebras”, Math. Slovaca, Vol. 52(2), (2002), pp. 157–175. Zbl1007.08003
  6. [6] R. Halas: “BCC-algebras inherited from posets”,Multiple Valued Logic, Vol.8, (2002), pp.223–235. http://dx.doi.org/10.1080/10236620215290 Zbl1032.06010
  7. [7] R. Halaš and J. Ort: “Standard QBCC-algebras”, Demonstratio Math., Vol. 36(1), (2003), pp. 1–10. Zbl1032.06009
  8. [8] R. Halaš and J. Ort: “QBCC-algebras inherited from qosets”, Math. Slovaca, Vol. 53(4), (2003), pp. 331–340. Zbl1072.06018
  9. [9] Y. Imai and K. Iséki: “On axiomatic system of propositional calculi”, XIV. Proc. Japan Acad., Vol. 42, (1966), pp. 19–22. http://dx.doi.org/10.3792/pja/1195522169 
  10. [10] Y. Komori: “The class of BCC-algebras is not a variety”, Math. Japon., Vol. 29, (1984), pp. 391–394. Zbl0553.03046
  11. [11] A. Wroński: “An algebraic motivation for BCK-algebras”, Math. Japon., Vol. 30, (1985), pp. 183–193. Zbl0569.03029
  12. [12] A. Wroński: “BCK-algebras do not form a variety”, Math. Japon., Vol. 28, (1983), pp. 211–213. Zbl0518.06014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.