QBCC-algebras inherited from qosets

Radomír Halaš; Jiří Ort

Mathematica Slovaca (2003)

  • Volume: 53, Issue: 4, page 331-340
  • ISSN: 0232-0525

How to cite

top

Halaš, Radomír, and Ort, Jiří. "QBCC-algebras inherited from qosets." Mathematica Slovaca 53.4 (2003): 331-340. <http://eudml.org/doc/34580>.

@article{Halaš2003,
author = {Halaš, Radomír, Ort, Jiří},
journal = {Mathematica Slovaca},
keywords = {BCC-algebra; quasi-ordered set},
language = {eng},
number = {4},
pages = {331-340},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {QBCC-algebras inherited from qosets},
url = {http://eudml.org/doc/34580},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Halaš, Radomír
AU - Ort, Jiří
TI - QBCC-algebras inherited from qosets
JO - Mathematica Slovaca
PY - 2003
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 53
IS - 4
SP - 331
EP - 340
LA - eng
KW - BCC-algebra; quasi-ordered set
UR - http://eudml.org/doc/34580
ER -

References

top
  1. BLOK W. J.-PIGOZZI D., Algebraizable Logics, Mem. Amer. Math. Soc. 396, Amer. Math. Soc, Providence, RI, 1989. (1989) Zbl0664.03042MR0973361
  2. DUDEK W. A., The number of subalgebras of finite B C C -algebras, Bull. Inst. Math. Acad. Sinica 20 (1992), 129-135. (1992) Zbl0770.06009MR1184464
  3. DUDEK W. A., On proper B C C -algebras, Bull. Inst. Math. Acad. Sinica 20 (1992), 137-150. (1992) Zbl0770.06010MR1184465
  4. DUDEK W. A., On algebras inspired by logics, Math. Stud. Lviv 14 (2000), 3-18. MR1811831
  5. CHAJDA I.-HALAS R., Algebraic properties of pre-logics, Math. Slovaca 52 (2002), 157-175. Zbl1007.08003MR1935115
  6. HALAS R., B C C -algebras inherited from posets, Mult.-Valued Log. 8 (2002), 223-235. Zbl1032.06010MR1957654
  7. IMAI Y.-ISEKI K., On axiomatic system of propositional calculi XIV, Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 19-22. (1966) MR0195704
  8. ISEKI K., An algebra related with a propositional calculus, Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 26-29. (1966) Zbl0207.29304MR0202571
  9. KIM J. Y.-YUN J. B.-KIM H. S., B C K -algebras inherited from the posets, Math. Japon. 45 (1997), 119-123. (1997) Zbl0864.06011MR1434966
  10. KOMORI Y., The class of B C C -algebras do not form a variety, Math. Japon. 29 (1984), 391-394. (1984) MR0752236
  11. KOMORI Y., The variety generated by B C C -algebras is finitely based, Rep. Fac. Sci. Shizuoka Univ. 17 (1983), 13-16. (1983) Zbl0516.08006MR0702484
  12. NEGGERS J.-KIM H. S., Algebras associated with posets, Demonstratio Math. 34 (2001), 13-23. Zbl0985.06001MR1823078
  13. WRONSKI A., An algebraic motivation for B C K -algebras, Math. Japon. 30 (1985), 183-193. (1985) Zbl0569.03029MR0795873
  14. WRONSKI A., B C K -algebras do not form a variety, Math. Japon. 28 (1983), 211-213. (1983) MR0699585

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.