On two theorems for flat, affine group schemes over a discrete valuation ring

Adrian Vasiu

Open Mathematics (2005)

  • Volume: 3, Issue: 1, page 14-25
  • ISSN: 2391-5455

Abstract

top
We include short and elementary proofs of two theorems that characterize reductive group schemes over a discrete valuation ring, in a slightly more general context.

How to cite

top

Adrian Vasiu. "On two theorems for flat, affine group schemes over a discrete valuation ring." Open Mathematics 3.1 (2005): 14-25. <http://eudml.org/doc/268856>.

@article{AdrianVasiu2005,
abstract = {We include short and elementary proofs of two theorems that characterize reductive group schemes over a discrete valuation ring, in a slightly more general context.},
author = {Adrian Vasiu},
journal = {Open Mathematics},
keywords = {11G10; 11G18; 14F30; 14G35; 14G40; 14K10; 14J10},
language = {eng},
number = {1},
pages = {14-25},
title = {On two theorems for flat, affine group schemes over a discrete valuation ring},
url = {http://eudml.org/doc/268856},
volume = {3},
year = {2005},
}

TY - JOUR
AU - Adrian Vasiu
TI - On two theorems for flat, affine group schemes over a discrete valuation ring
JO - Open Mathematics
PY - 2005
VL - 3
IS - 1
SP - 14
EP - 25
AB - We include short and elementary proofs of two theorems that characterize reductive group schemes over a discrete valuation ring, in a slightly more general context.
LA - eng
KW - 11G10; 11G18; 14F30; 14G35; 14G40; 14K10; 14J10
UR - http://eudml.org/doc/268856
ER -

References

top
  1. [1] S. Bosch, W. Lütkebohmert and M. Raynaud: Néron models, Springer-Verlag, 1990. 
  2. [2] A. Borel: “Linear algebraic groups”, Grad. Texts in Math., Vol. 126, Springer-Verlag, 1991. 
  3. [3] N. Bourbaki: Lie groups and Lie algebras, Springer-Verlag, 2002, Chapters 4–6. 
  4. [4] F. Bruhat and J. Tits: “Groupes réductifs, sur un corps local: I Données radicielles valuées”, Inst. Hautes Études Sci. Publ. Math., Vol. 41, (1972), pp. 5–251. 
  5. [5] M. Demazure, A. Grothendieck and ét al.: Schémas en groupes. Vol. I–III, Lecture Notes in Math., Vol. 151–153, Springer-Verlag, 1970. 
  6. [6] A. Grothendieck: “Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schéma (Quatrième Partie)”, Inst. Hautes Études Sci. Publ. Math., Vol. 32, (1967). 
  7. [7] G. Hiss: “Die adjungierten Darstellungen der Chevalley-Gruppen”,Arch. Math.,Vol. 42, (1982),pp. 408–416. http://dx.doi.org/10.1007/BF01190689 Zbl0532.20022
  8. [8] J.E. Humphreys: Conjugacy classes in semisimple algebraic groups, In: Math. Surv. and Monog., Vol. 43: Amer. Math. Soc., Providence, 1995. Zbl0834.20048
  9. [9] J.C. Jantzen: Representations of algebraic groups. Second edition., In: Math. Surveys and Monog., Vol. 107, Amer. Math. Soc., Providence, 2000. 
  10. [10] H. Matsumura: Commutative algebra. Second edition. The Benjamin/Cummings Publ. Co., Inc., Reading, Massachusetts, 1980. Zbl0441.13001
  11. [11] R. Pink: “Compact subgroups of linear algebraic groups”,J. of Algebra,Vol. 206, (1998),pp. 438–504. http://dx.doi.org/10.1006/jabr.1998.7439 
  12. [12] G. Prasad and J.-K. Yu: On quasi-reductive group schemes, math.NT/0405381, 34 pages revision, June 2004. 
  13. [13] A. Vasiu: “Integral canonical models of Shimura varieties of preabelian type”, Asian J. Math., Vol. 3(2), (1999), pp. 401–518. 
  14. [14] A. Vasiu: “Surjectivity criteria for p-adic representations, Part I”,Manuscripta Math.,Vol. 112(3), (2003),pp. 325–355. http://dx.doi.org/10.1007/s00229-003-0402-4 Zbl1117.11064

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.