Determinants of (–1,1)-matrices of the skew-symmetric type: a cocyclic approach
Víctor Álvarez; José Andrés Armario; María Dolores Frau; Félix Gudiel
Open Mathematics (2015)
- Volume: 13, Issue: 1, page 16-25, electronic only
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Álvarez V., Armario J.A., Frau M.D., Gudiel F., The maximal determinant of cocyclic (1; 1)-matrices over D2t , Linear Algebra Appl., 2012, 436, 858-873[WoS] Zbl1236.05043
- [2] Álvarez V., Armario J.A., Frau M.D., Gudiel F., Embedding cocyclic D-optimal designs in cocyclic Hadamard matrices, Electron. J. Linear Algebra, 2012, 24, 66-82 Zbl1253.05050
- [3] Álvarez V., Armario J.A., Frau M.D., Real P., A system of equations for describing cocyclic Hadamard matrices, J. Comb. Des., 2008, 16, 276-290[WoS][Crossref] Zbl1182.05019
- [4] Álvarez V., Armario J.A., Frau M.D., Real P., The homological reduction method for computing cocyclic Hadamard matrices, J. Symb. Comput., 2009, 44, 558-570[WoS] Zbl1163.05004
- [5] Armario J.A., Frau M.D., Self-dual codes from (1; 1)-matrices of skew type, preprint available at http://arxiv.org/abs/1311.2637
- [6] Bussemaker F., Kaplansky I., McKay B., Seidel J., Determinants of matrices of the conference type, Linear Algebra Appl., 1997, 261, 275-292 Zbl0878.15001
- [7] Cameron P., Problem 104 (Peter Cameron’s Blog), <http://cameroncounts.wordpress.com/2011/08/19/a-matrix-problem/> 2011, accessed 26 September 2013
- [8] Craigen R., The range of the determinant function on the set of n x n .0; 1)-matrices, J. Combin. Math. Combin. Comput. 1990, 8, 161-171 Zbl0735.05017
- [9] Ehlich H., Determiantenabschätzungen für binäre Matrizen, Math. Z., 1964, 83, 123-132
- [10] Fletcher R. J., Koukouvinos C., Seberry J., New skew-Hadamard matrices of order 4 · 59 and new D-optimal designs of order 2 · 59, Discrete Math., 2004, 286, 252-253 Zbl1054.62081
- [11] Horadam K.J., de Launey W., Cocyclic development of designs, J. Algebraic Combin. 2 (3) (1993) 267-290; Erratum: J. Algebraic Combin. 1994, 3 (1), 129 Zbl0785.05019
- [12] Horadam K.J., Hadamard Matrices and Their Applications, Princeton University Press, Princeton, NJ, 2007 Zbl1145.05014
- [13] Ionin Y., Kharaghani H., Balanced generalized Weighing matrices and Conference matrices, in: C. Colbourn and J. Dinitz (Eds.), The CRC Handbook of Combinatorial Designs, 2nd ed., Taylor and Francis, Boca Raton, 2006
- [14] Kharaghani H., Orrick W., D-optimal designs, in: C. Colbourn and J. Dinitz (Eds.), The CRC Handbook of Combinatorial Designs, 2nd ed., Taylor and Francis, Boca Raton, 2006
- [15] Krapiperi A., Mitrouli M., Neubauer M.G., Seberry J., An eigenvalue approach evaluating minors for weighing matrices W(n, n - 1), Linear Algebra Appl., 2012, 436, 2054-2066[WoS] Zbl1236.15017
- [16] MacLane S., Homology, Classics in Mathematics Springer-Verlang, Berlin, 1995, Reprint of the 1975 edition
- [17] Orrick W., Solomon B., The Hadamard Maximal Determinant Problem (website), http://www.indiana.edu/~maxdet/, accessed 3 October 2013
- [18] Szollosi F., Exotic complex Hadamard matrices and their equivalence, Cryptogr. Commun., 2010, 2, 187-198 Zbl1228.05097
- [19] Wojtas W., On Hadamard’s inequallity for the determinants of order non-divisible by 4, Colloq. Math., 1964, 12, 73-83 Zbl0126.02604