Analytic Feynman integrals of transforms of variation of cylinder type functions over Wiener paths in abstract Wiener space

Myung Kim

Open Mathematics (2005)

  • Volume: 3, Issue: 3, page 475-495
  • ISSN: 2391-5455

Abstract

top
In this paper, we evaluate various analytic Feynman integrals of first variation, conditional first variation, Fourier-Feynman transform and conditional Fourier-Feynman transform of cylinder type functions defined over Wiener paths in abstract Wiener space. We also derive the analytic Feynman integral of the conditional Fourier-Feynman transform for the product of the cylinder type functions which define the functions in a Banach algebra introduced by Yoo, with n linear factors.

How to cite

top

Myung Kim. "Analytic Feynman integrals of transforms of variation of cylinder type functions over Wiener paths in abstract Wiener space." Open Mathematics 3.3 (2005): 475-495. <http://eudml.org/doc/268895>.

@article{MyungKim2005,
abstract = {In this paper, we evaluate various analytic Feynman integrals of first variation, conditional first variation, Fourier-Feynman transform and conditional Fourier-Feynman transform of cylinder type functions defined over Wiener paths in abstract Wiener space. We also derive the analytic Feynman integral of the conditional Fourier-Feynman transform for the product of the cylinder type functions which define the functions in a Banach algebra introduced by Yoo, with n linear factors.},
author = {Myung Kim},
journal = {Open Mathematics},
keywords = {28C20},
language = {eng},
number = {3},
pages = {475-495},
title = {Analytic Feynman integrals of transforms of variation of cylinder type functions over Wiener paths in abstract Wiener space},
url = {http://eudml.org/doc/268895},
volume = {3},
year = {2005},
}

TY - JOUR
AU - Myung Kim
TI - Analytic Feynman integrals of transforms of variation of cylinder type functions over Wiener paths in abstract Wiener space
JO - Open Mathematics
PY - 2005
VL - 3
IS - 3
SP - 475
EP - 495
AB - In this paper, we evaluate various analytic Feynman integrals of first variation, conditional first variation, Fourier-Feynman transform and conditional Fourier-Feynman transform of cylinder type functions defined over Wiener paths in abstract Wiener space. We also derive the analytic Feynman integral of the conditional Fourier-Feynman transform for the product of the cylinder type functions which define the functions in a Banach algebra introduced by Yoo, with n linear factors.
LA - eng
KW - 28C20
UR - http://eudml.org/doc/268895
ER -

References

top
  1. [1] M.D. Brue: A functional transform for Feynman integrals similar to the Fourier transform, Thesis, Univ. of Minnesota, Minneapolis, 1972. 
  2. [2] R.H. Cameron: The first variation of an infefineite Wiener integral, Proc. Amer. Math. Soc., Vol. 2, (1951), pp. 914–924. http://dx.doi.org/10.2307/2031708 Zbl0044.12103
  3. [3] R.H. Cameron and D.A. Storvick: “An L 2 analytic Fourier-Feynman transform”, Michigan Math. J., Vol. 23, (1976), pp. 1–30. http://dx.doi.org/10.1307/mmj/1029001617 Zbl0382.42008
  4. [4] R.H. Cameron and D.A. Storvick: Some Banach algebras of analytic Feynman integrable functionals, An analytic functions, Lecture Notes in Math., Vol. 798, Springer, 1980, pp. 18–27. http://dx.doi.org/10.1007/BFb0097256 Zbl0439.28007
  5. [5] K.S. Chang, D.H. Cho, B.S. Kim, T.S. Song and I. Yoo: “Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space”, Integral Transform. Spec. Funct., Vol. 14(3), (2003), pp. 217–235. http://dx.doi.org/10.1080/1065246031000081652 Zbl1031.28008
  6. [6] K.S. Chang, D.H. Cho and I. Yoo: “A conditional analytic Feynman integral over Wiener paths in abstract Wiener space”, Intern. Math. J., Vol. 2(9), (2002), pp. 855–870. Zbl1275.28015
  7. [7] K.S. Chang, D.H. Cho and I. Yoo: “Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space”, Czechoslovak Math. J., Vol. 54(129), (2004), pp. 161–180. http://dx.doi.org/10.1023/B:CMAJ.0000027256.06816.1a Zbl1047.28008
  8. [8] K.S. Chang, T.S. Song and I. Yoo: “Analytic Fourier-Feynman transform and first variation on abstract Wiener space”, J. Korean Math. Soc., Vol. 38(2), (2001), pp. 485–501. Zbl1033.28007
  9. [9] D.H. Cho: “Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space: an L p theory”, J. Korean Math. Soc., Vol. 42(2), (2004), pp. 265–294. Zbl1040.28019
  10. [10] D.H. Cho: “Conditional first variation over Wiener paths in abstract Wiener space”, J. Korean Math. Soc., (2004), to appear. Zbl1076.28013
  11. [11] D.H. Cho: “Fourier-Feynman transform and first variation of cylinder type functions over Wiener paths in abstract Wiener space”, Intern. Math. J., (2004), submitted. 
  12. [12] D.H. Cho: “Conditional Fourier-Feynman transforms of variations over Wiener paths in abstract Wiener space”, J. Korean Math. Soc., (2005), to apear. 
  13. [13] G.W. Johnson and D.L. Skoug: “An L p analytic Fourier-Feynman transform”, Michigan Math. J., Vol. 26, (1979), pp. 103–127. http://dx.doi.org/10.1307/mmj/1029002166 Zbl0409.28007
  14. [14] G. Kallianpur and C. Bromley: “Generalized Feynman integrals using an analytic continuation in several complex variables”, In Stochastic analysis and applications, Adv. Probab.Related Topics, Vol. 7, Dekker, New York, 1984, pp. 217–267. Zbl0554.60061
  15. [15] H.H. Kuo: Gaussian measures in Banach spaces, Lecture Notes in Math., Vol. 463, Springer, 1975. Zbl0306.28010
  16. [16] C. Park, D.L. Skong and D.A. Storvick: “Fourier-Feynman transforms and the frist variation”, Rend. Circ. Mat. Palermo II, Vol. 47(2), (1998), pp. 277–292. Zbl0907.28008
  17. [17] K.S. Ryu: “The Wiener integral over paths in abstract Wiener space”, J. Korean Math. Soc., Vol. 29(2), (1992), pp. 317–331. Zbl0768.28005
  18. [18] I. Yoo: “The analytic Feynman integral over paths in abstract Wiener space”, Comm. Korean Math. Soc., Vol. 10(1), (1995), pp. 93–107. Zbl0944.28011

NotesEmbed ?

top

You must be logged in to post comments.