Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space

Kun Soo Chang; Dong Hyun Cho; Il Yoo

Czechoslovak Mathematical Journal (2004)

  • Volume: 54, Issue: 1, page 161-180
  • ISSN: 0011-4642

Abstract

top
In this paper, we introduce a simple formula for conditional Wiener integrals over C 0 ( 𝔹 ) , the space of abstract Wiener space valued continuous functions. Using this formula, we establish various formulas for a conditional Wiener integral and a conditional Feynman integral of functionals on C 0 ( 𝔹 ) in certain classes which correspond to the classes of functionals on the classical Wiener space introduced by Cameron and Storvick. We also evaluate the conditional Wiener integral and conditional Feynman integral for functionals of the form exp 0 T θ ( s , x ( s ) ) d η ( s ) which are of interest in Feynman integration theories and quantum mechanics.

How to cite

top

Chang, Kun Soo, Cho, Dong Hyun, and Yoo, Il. "Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space." Czechoslovak Mathematical Journal 54.1 (2004): 161-180. <http://eudml.org/doc/30846>.

@article{Chang2004,
abstract = {In this paper, we introduce a simple formula for conditional Wiener integrals over $C_0(\mathbb \{B\})$, the space of abstract Wiener space valued continuous functions. Using this formula, we establish various formulas for a conditional Wiener integral and a conditional Feynman integral of functionals on $C_0(\mathbb \{B\})$ in certain classes which correspond to the classes of functionals on the classical Wiener space introduced by Cameron and Storvick. We also evaluate the conditional Wiener integral and conditional Feynman integral for functionals of the form \[ \exp \biggl \lbrace \int \_0^T \theta (s, x(s))\mathrm \{d\}\eta (s) \biggr \rbrace \] which are of interest in Feynman integration theories and quantum mechanics.},
author = {Chang, Kun Soo, Cho, Dong Hyun, Yoo, Il},
journal = {Czechoslovak Mathematical Journal},
keywords = {Banach algebra $S_\{\mathbb \{B\}\}^\{\prime \prime \}$; Banach space $S_\{n, \mathbb \{B\}\}^\{\prime \prime \}$; conditional Wiener integral; conditional Feynman integral; simple formula for conditional Wiener integrals; Banach algebra; conditional Wiener integral; conditional Feynman integral},
language = {eng},
number = {1},
pages = {161-180},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space},
url = {http://eudml.org/doc/30846},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Chang, Kun Soo
AU - Cho, Dong Hyun
AU - Yoo, Il
TI - Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 1
SP - 161
EP - 180
AB - In this paper, we introduce a simple formula for conditional Wiener integrals over $C_0(\mathbb {B})$, the space of abstract Wiener space valued continuous functions. Using this formula, we establish various formulas for a conditional Wiener integral and a conditional Feynman integral of functionals on $C_0(\mathbb {B})$ in certain classes which correspond to the classes of functionals on the classical Wiener space introduced by Cameron and Storvick. We also evaluate the conditional Wiener integral and conditional Feynman integral for functionals of the form \[ \exp \biggl \lbrace \int _0^T \theta (s, x(s))\mathrm {d}\eta (s) \biggr \rbrace \] which are of interest in Feynman integration theories and quantum mechanics.
LA - eng
KW - Banach algebra $S_{\mathbb {B}}^{\prime \prime }$; Banach space $S_{n, \mathbb {B}}^{\prime \prime }$; conditional Wiener integral; conditional Feynman integral; simple formula for conditional Wiener integrals; Banach algebra; conditional Wiener integral; conditional Feynman integral
UR - http://eudml.org/doc/30846
ER -

References

top
  1. Mathematical Theory of Feynman Path Integral. Lecture Notes in Mathematics Vol.  523, Springer-Verlag, Berlin, 1976. (1976) MR0495901
  2. Real Analysis and Probability, Academic Press, New York, 1972. (1972) MR0435320
  3. Some Banach algebras of analytic Feynman integrable functionals, In: Analytic Functions, Kozubnik, 1979. Lecture Notes in Mathematics Vol.  798, Springer-Verlag, Berlin-New York, 1980, pp. 18–67. (1980) MR0577446
  4. Evaluation of some conditional Wiener integrals, Bull. Korean Math. Soc. 21 (1984), 99–106. (1984) MR0768465
  5. 10.1090/S0002-9939-1987-0884471-6, Proc. Amer. Math. Soc. 100 (1987), 309–318. (1987) MR0884471DOI10.1090/S0002-9939-1987-0884471-6
  6. 10.2140/pjm.1987.130.27, Pacific J.  Math. 130 (1987), 27–40. (1987) Zbl0634.28007MR0910652DOI10.2140/pjm.1987.130.27
  7. 10.1137/0520064, SIAM. J.  Math. Anal. 20 (1989), 950–965. (1989) MR1000731DOI10.1137/0520064
  8. Measure Theory, Birkhäuser-Verlag, Boston, 1980. (1980) Zbl0436.28001MR0578344
  9. Volterra variational equations, boundary value problems and function space integrals, Acta Math. 109 (1962), 147–228. (1962) MR0151717
  10. 10.2307/2322111, Amer. Math. Monthly 91 (1984), 131–133. (1984) Zbl0535.28004MR0729555DOI10.2307/2322111
  11. Generalized Dyson series, generalized Feynman diagrams, the Feynman integral and Feynman’s operational calculus, Mem. Amer. Math. Soc. 62 (1986). (1986) MR0849943
  12. Generalized Feynman integrals using analytic continuation in several complex variables, In: Stochastic Analysis and Applications, M. A.  Pinsky (ed.), Dekker, New York, 1984. (1984) MR0776983
  13. 10.1090/S0002-9947-1973-0370725-3, Trans. Amer. Math. Soc. 185 (1973), 253–264. (1973) MR0370725DOI10.1090/S0002-9947-1973-0370725-3
  14. Gaussian measures in Banach Spaces. Lecture Notes in Mathematics Vol.  463, Springer-Verlag, Berlin-New York, 1975. (1975) MR0461643
  15. Laws of Large Numbers for Normed Linear Spaces and Certain Fréchet Spaces. Lecture Notes in Mathematics Vol. 360, Springer-Verlag, Berlin-New York, 1973. (1973) MR0426114
  16. 10.2140/pjm.1988.135.381, Pacific J.  Math. 135 (1988), 381–394. (1988) MR0968620DOI10.2140/pjm.1988.135.381
  17. The Wiener integral over paths in abstract Wiener space, J.  Korean Math. Soc. 29 (1992), 317–331. (1992) Zbl0768.28005MR1180659
  18. 10.2140/pjm.1974.52.631, Pacific J.  Math. 52 (1974), 631–640. (1974) Zbl0323.60003MR0365644DOI10.2140/pjm.1974.52.631
  19. 10.2140/pjm.1975.59.623, Pacific J.  Math. 59 (1975), 623–638. (1975) Zbl0365.60073MR0390162DOI10.2140/pjm.1975.59.623
  20. The analytic Feynman integral over paths in abstract Wiener space, Comm. Korean Math. Soc. 10 (1995), 93–107. (1995) Zbl0944.28011MR1430176

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.