A survey of certain results on strong approximation by orthogonal series

László Leindler

Open Mathematics (2004)

  • Volume: 2, Issue: 3, page 448-477
  • ISSN: 2391-5455

Abstract

top
This is a survey of results in a particular direction of the theory of strong approximation by orthogonal series, related mostly with author's contributions to the subject.

How to cite

top

László Leindler. "A survey of certain results on strong approximation by orthogonal series." Open Mathematics 2.3 (2004): 448-477. <http://eudml.org/doc/268924>.

@article{LászlóLeindler2004,
abstract = {This is a survey of results in a particular direction of the theory of strong approximation by orthogonal series, related mostly with author's contributions to the subject.},
author = {László Leindler},
journal = {Open Mathematics},
keywords = {40C05; 40C15; 40F05; 41-02; 41A25; 42A10; 42A24; 42C05; 42C15},
language = {eng},
number = {3},
pages = {448-477},
title = {A survey of certain results on strong approximation by orthogonal series},
url = {http://eudml.org/doc/268924},
volume = {2},
year = {2004},
}

TY - JOUR
AU - László Leindler
TI - A survey of certain results on strong approximation by orthogonal series
JO - Open Mathematics
PY - 2004
VL - 2
IS - 3
SP - 448
EP - 477
AB - This is a survey of results in a particular direction of the theory of strong approximation by orthogonal series, related mostly with author's contributions to the subject.
LA - eng
KW - 40C05; 40C15; 40F05; 41-02; 41A25; 42A10; 42A24; 42C05; 42C15
UR - http://eudml.org/doc/268924
ER -

References

top
  1. [1] G. Alexits:Konvergenzprobleme der Orthogonalreihen, Akadémiai Kiadó, Budapest, 1960. 
  2. [2] G. Alexits: “Sur les bornes de la théorie, de l'approximation des fonctions continues par polynomes”,Magyar. Tud. Akad. Mat. Kut. Int. Közl., Vol. 8, (1963), pp. 329–340. 
  3. [3] G. Alexits and D. Králik: “Über den Annäherungsgrad der Approximation im starken Sinne von stetigen Funktionen”,Magyar Tud. Akad. Mat. Kut. Int. Közl., Vol. 8, (1963), pp. 317–327. 
  4. [4] G. Alexits and D. Králik: “Some remarks on the approximation in strong sense”,Analysis Math., Vol. 1, (1975), pp. 3–8. http://dx.doi.org/10.1007/BF01905108 
  5. [5] S. Bernstein: “Sur l'ordre de la meilleure approximation des fonctions continues par des polynomes de degré donné”,Mémoires Acad. Roy. Belgique, Vol. 4, (1912), pp. 1–104. 
  6. [6] K. Endl: “Ein Beitrag zur Theorie der starken Summierbarkeit mit einer Anwendung auf Orthonormalreihen”,Acta Sci. Math., Vol. 43, (1981), pp. 27–35. Zbl0558.42003
  7. [7] K. Endl and L. Leindler: “On the strong summability and approximation of orthogonal series with large exponent”,Analysis, Vol. 3, (1983), 123–134. Zbl0543.42014
  8. [8] L. Fejér: “Untersuchungen über Fouriersche Reihen”,Math. Annalen, Vol. 58, (1904), pp. 501–569. 
  9. [9] T.M. Flett: “Some more theorems concerning the absolute summability of Fourier series and power series”,Proc. London Math. Soc., Vol. 8, (1958), Vol. 357–387. Zbl0109.04502
  10. [10] G.H. Hardy:Divergent series, Clarendon Press, Oxford, 1956. 
  11. [11] G.H. Hardy and J.E. Littlewood: “Sur la série de Fourier d'une fonction à carré sommable”,Comptes Rendus, Vol. 28, (1913), pp. 1307–1309. Zbl44.0302.03
  12. [12] W. Henrich: “Starke Approximation von Orthogonalreihen mit Cesàroverfahren”,Acta Sci. Math., Vol. 54, (1990), pp. 305–312. Zbl0726.42020
  13. [13] P.S. Kantawala, S.R. Agrawal and C.M. Patel: “On strong approximation of Nörlund and Euler means of orthogonal series”,Indian Journal of Math., Vol. 33, (1991), pp 99–117. Zbl0794.40005
  14. [14] L. Leindler: “Über die sehr starke Riesz-Summierbarkeit der Orthogonalreihen und Konvergenz lückenhafter orthogonalreihen”,Acta Math. Acad. Sci. Hung., Vol. 13, (1962), pp. 401–414. http://dx.doi.org/10.1007/BF02020805 Zbl0113.05003
  15. [15] L. Leindler: “Über die de la Vallée Poussinschen Mittel allgemeiner Orthogonalreihen”,Publ. Math. Debrecen, Vol. 10, (1963), pp. 274–282. Zbl0129.05002
  16. [16] L. Leindler: “Über die Rieszschen Mittel allgemeiner Orthogonalreihen”,Acta Sci. Math., Vol. 24, (1963), pp. 129–138. Zbl0117.29402
  17. [17] L. Leindler: “Über die de la Vallée Poussinsche Summierbarkeit allgemeiner Orthogonalreihen”,Acta Math. Acad. Sci. Hung., Vol. 16, (1965), pp. 375–387. http://dx.doi.org/10.1007/BF01904844 Zbl0138.28802
  18. [18] L. Leindler: “On summability of Fourier series”,Acta Sci. Math., Vol. 29, (1968), pp. 147–162. Zbl0157.38501
  19. [19] L. Leindler: “On the strong approximation of orthogonal series”,Acta Sci. Math., Vol. 32, (1971), pp. 41–50. Zbl0214.08102
  20. [20] L. Leindler: “On the strong approximation of orthogonal series”,Acta Sci. Math., Vol. 37, (1975), pp. 87–94. Zbl0305.42014
  21. [21] L. Leindler: “On the very strong approximation of orthogonal series”,Mitt. Math. Sem. Giessen, Vol. 147, (1981), pp. 131–140. 
  22. [22] L. Leindler: “On the strong summability and approximation of orthogonal series”,Acta Math. Acad. Sci. Hungar., Vol. 37, (1981), pp. 245–254. http://dx.doi.org/10.1007/BF01904886 Zbl0474.42016
  23. [23] L. Leindler: “On the strong and very strong summability and approximation of orthogonal series by generalized Abel method”,Studia Sci. Math. Hung., Vol. 16, (1981), pp. 35–43. Zbl0516.42036
  24. [24] L. Leindler: “On the extra strong approximation of orthogonal series”,Analysis Math., Vol. 8, (1982), pp. 125–133. http://dx.doi.org/10.1007/BF01911334 Zbl0499.42013
  25. [25] L. Leindler: “On the strong approximation of orthogonal series with large exponent”,Analysis Math., Vol. 8, (1982), pp. 173–179. http://dx.doi.org/10.1007/BF02199926 Zbl0518.42028
  26. [26] L. Leindler: “Limit cases in the strong approximation of orthogonal series”,Acta Sci. Math., Vol. 48, (1985), pp. 269–284. Zbl0589.42019
  27. [27] L. Leindler:Strong approximation by Fourier series, Akadémiai Kiadó, Budapest, 1985. 
  28. [28] L. Leindler: “On the generalized strong de la Vallée Poussin approximation”,Acta Sci. Math., Vol. 56, (1992), pp. 83–88. Zbl0779.42017
  29. [29] L. Leindler: “A note on the strong de la Vallée Poussin approximation”,Acta Sci. Math., Vol. 56, (1992), pp. 287–291. Zbl0857.42018
  30. [30] L. Leindler: “On strong approximation by Cesàro means of negative order”,Acta Sci. Math., Vol. 56, (1992), pp. 293–303. Zbl0851.42023
  31. [31] L. Leindler: “Some results on strong approximation by orthogonal series”,Acta Sci. Math., Vol. 58, (1993), pp. 127–141. Zbl0792.42016
  32. [32] L. Leindler: “A note on the relation between ordinary and strong approximation of orthogonal series”,Acta Math. Hungar., Vol. 63(4), (1994), pp. 361–370. http://dx.doi.org/10.1007/BF01874461 Zbl0798.42013
  33. [33] L. Leindler: “On extensions of some theorems of Flett. I”,Acta Math. Hungar., Vol. 64, (1994), pp. 215–229. 
  34. [34] L. Leindler: “A note on the relation between ordinary and strong approximation of orthogonal series”,Acta Math. Hungar., Vol. 63, (1994), pp. 361–370. http://dx.doi.org/10.1007/BF01874461 Zbl0798.42013
  35. [35] L. Leindler: “General results on strong approximation by Cesàro means of negative order”,Acta Math. Hungar., Vol. 66, (1995), pp. 61–82. http://dx.doi.org/10.1007/BF01874354 Zbl0834.42014
  36. [36] L. Leindler and A. Meir: “General Results on strong approximation by orthogonal series”,Acta Sci. Math., Vol. 55, (1991), pp. 317–331. Zbl0763.42020
  37. [37] L. Leindler and A. Meir: “An additional note on strong approximation by orthogonal series”,Acta Sci. Math., Vol. 56, (1992), pp. 89–95. Zbl0779.42018
  38. [38] L. Leindler and H. Schwinn: “On the strong and extra strong approximation of orthogonal series”,Acta Sci. Math., Vol. 45, (1983), pp. 293–304. Zbl0522.42024
  39. [39] J. Marcinkiewicz: “Sur l'interpolation”,Studia Math., Vol. 6, (1936), pp. 1–17, 67–81. Zbl0016.01901
  40. [40] J. Meder: “On very strong Riesz-summability of orthogonal series”,Studia Math., Vol. 20, (1961), pp. 285–300. Zbl0099.05103
  41. [41] D. Menchoff: “Sur les séries de fonctions orthogonales bornées dans leur ensemble”,Recueil Math. Moscou (Math. Sbornik), Vol. 3, (1938), pp. 103–118. Zbl0018.39701
  42. [42] F. Móricz: “A note on the strongT-summation of orthogonal series”,Acta Sci. Math. (Szeged), Vol. 30, (1969), pp. 69–76. 
  43. [43] F. Móricz: “Approximation by partial sums and Cesàro means of multiple orthogonal series,”Tôhoku Math. Journ., Vol. 35, (1983), pp. 519–539. Zbl0525.42014
  44. [44] F. Móricz: “Approximation Theorems for Double Orthogonal Series, II”,Jour. of Approx. Theory, Vol. 51, (1987), pp. 372–382. http://dx.doi.org/10.1016/0021-9045(87)90045-1 
  45. [45] F. Móricz: “Strong approximation by rectangular partial sums of double orthogonal series”,Analysis Math., Vol. 13, (1987). Zbl0662.42016
  46. [46] L. Rempulska: “On the (A, p)-summability of orthonormal series”,Demonstratio Math., Vol. 13, (1980), pp. 919–925. Zbl0477.40009
  47. [47] F. Schipp: “On the strong approximation by the partial sums of the Walsh-Fourier series”,MTA III. Osztály Közleményei, Vol. 19, (1969), pp. 101–111 (in Hungarian with English Summary). 
  48. [48] H.-J. Schmeisser and W. Sickel:Some remarks on strong approximation by Cesàro means, Approximation and Function Spaces, Banach Center Publications, Warsaw, Vol. 22, 1989, 363–375. 
  49. [49] H. Schwinn: “On strong approximation of orthogonal series”,Acta Sci. Math., Vol. 60, (1995), pp. 609–618. Zbl0835.42018
  50. [50] G. Sunouchi: “On the strong summability of orthogonal series”,Acta Sci. Math. (Szeged), Vol. 27, (1966), pp. 71–76. Zbl0148.29702
  51. [51] G. Sunouchi: “Strong approximation by Fourier series and orthogonal series”,Indian J. Math., Vol. 9, (1967), pp. 237–246. Zbl0187.02302
  52. [52] I. Szalay:On the strong approximation of orthogonal series, Constructive Function Theory '77, Sofia, 1980, pp.505–510. 
  53. [53] I. Szalay:On the generalized absolute Cesàro-summability and the strong approximation of orthogonal series, Constructive Function Theory '81, Sofia, 1983, pp. 543–550. 
  54. [54] R. Taberski: “On the strong de la Vallée Poussin means for Fourier-Chebyshev series”,Annales Soc. Math. Polonae, Vol. 36, (1996), pp. 235–245. Zbl0872.42008
  55. [55] K. Tandori: “Über die orthogonalen Funktionen. IV (Starke Summation)”,Acta Sci. Math. (Szeged), Vol. 19, (1958), pp. 18–25. Zbl0087.27701
  56. [56] V. V. Zhuk:Strong approximation of periodic functions, Leningrad Univ., Leningrad, 1989. 
  57. [57] O. A. Ziza:Summability of Orthogonal Series, USSR, Moscow, 1999 (in Russian with English summary). 
  58. [58] A. Zygmund: “Sur l'application de la première moyenne arithmétique dans la théorie des séries orthogonales”,Fund. Math., Vol. 10, (1927), pp. 356–362. Zbl53.0267.04
  59. [59] A. Zygmund: “On the convergence and summability of power series on the circle of convergence”,Proc. London Math. Soc., Vol. 47, (1941), pp. 326–350. Zbl0060.20208

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.