Local-global principle for congruence subgroups of Chevalley groups

Himanee Apte; Alexei Stepanov

Open Mathematics (2014)

  • Volume: 12, Issue: 6, page 801-812
  • ISSN: 2391-5455

Abstract

top
Suslin’s local-global principle asserts that if a matrix over a polynomial ring vanishes modulo the independent variable and is locally elementary then it is elementary. In this article we prove Suslin’s local-global principle for principal congruence subgroups of Chevalley groups. This result is a common generalization of the result of Abe for the absolute case and Apte, Chattopadhyay and Rao for classical groups. For the absolute case the localglobal principle was recently obtained by Petrov and Stavrova in the more general settings of isotropic reductive groups.

How to cite

top

Himanee Apte, and Alexei Stepanov. "Local-global principle for congruence subgroups of Chevalley groups." Open Mathematics 12.6 (2014): 801-812. <http://eudml.org/doc/268946>.

@article{HimaneeApte2014,
abstract = {Suslin’s local-global principle asserts that if a matrix over a polynomial ring vanishes modulo the independent variable and is locally elementary then it is elementary. In this article we prove Suslin’s local-global principle for principal congruence subgroups of Chevalley groups. This result is a common generalization of the result of Abe for the absolute case and Apte, Chattopadhyay and Rao for classical groups. For the absolute case the localglobal principle was recently obtained by Petrov and Stavrova in the more general settings of isotropic reductive groups.},
author = {Himanee Apte, Alexei Stepanov},
journal = {Open Mathematics},
keywords = {Chevalley groups; Principal congruence subgroup; Local-global principle; Dilation principle; principal congruence subgroups; local-global principle; dilation principle},
language = {eng},
number = {6},
pages = {801-812},
title = {Local-global principle for congruence subgroups of Chevalley groups},
url = {http://eudml.org/doc/268946},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Himanee Apte
AU - Alexei Stepanov
TI - Local-global principle for congruence subgroups of Chevalley groups
JO - Open Mathematics
PY - 2014
VL - 12
IS - 6
SP - 801
EP - 812
AB - Suslin’s local-global principle asserts that if a matrix over a polynomial ring vanishes modulo the independent variable and is locally elementary then it is elementary. In this article we prove Suslin’s local-global principle for principal congruence subgroups of Chevalley groups. This result is a common generalization of the result of Abe for the absolute case and Apte, Chattopadhyay and Rao for classical groups. For the absolute case the localglobal principle was recently obtained by Petrov and Stavrova in the more general settings of isotropic reductive groups.
LA - eng
KW - Chevalley groups; Principal congruence subgroup; Local-global principle; Dilation principle; principal congruence subgroups; local-global principle; dilation principle
UR - http://eudml.org/doc/268946
ER -

References

top
  1. [1] Abe E., Whitehead groups of Chevalley groups over polynomial rings, Comm. Algebra, 1983, 11(12), 1271–1307 http://dx.doi.org/10.1080/00927878308822906 Zbl0513.20030
  2. [2] Apte H., Chattopadhyay P., Rao R.A., A local global theorem for extended ideals, J. Ramanujan Math. Soc., 2012, 27(1), 1–20 http://dx.doi.org/10.1007/s11139-011-9299-9 Zbl1254.19002
  3. [3] Bak A., Nonabelian K-theory: The nilpotent class of K 1 and general stability, K-Theory, 1991, 4(4), 363–397 http://dx.doi.org/10.1007/BF00533991 Zbl0741.19001
  4. [4] Bak A., Hazrat R., Vavilov N., Localization-completion strikes again: relative K 1 is nilpotent by abelian, J. Pure Appl. Algebra, 2009, 213(6), 1075–1085 http://dx.doi.org/10.1016/j.jpaa.2008.11.014 Zbl1167.19002
  5. [5] Basu R., Chattopadhyay P., Rao R.A., Some remarks on symplectic injective stability, Proc. Amer. Math. Soc., 2011, 139(7), 2317–2325 http://dx.doi.org/10.1090/S0002-9939-2010-10654-8 Zbl1223.19001
  6. [6] Basu R., Rao R., Injective stability for K 1 of classical modules, J. Algebra, 2010, 323(4), 867–877 http://dx.doi.org/10.1016/j.jalgebra.2009.12.012 Zbl1185.19001
  7. [7] Chattopadhyay P., Rao R.A., Elementary symplectic orbits and improved K 1-stability, J. K-Theory, 2011, 7(2), 389–403 http://dx.doi.org/10.1017/is010002021jkt109 Zbl1218.19001
  8. [8] Grunewald F., Mennicke J., Vaserstein L., On symplectic groups over polynomial rings, Math. Z., 1991, 206(1), 35–56 http://dx.doi.org/10.1007/BF02571323 Zbl0725.20038
  9. [9] Hazrat R., Stepanov A., Vavilov N., Zhang Z., The yoga of commutators, J. Math. Sci. (N.Y.), 2011, 179(6), 662–678 http://dx.doi.org/10.1007/s10958-011-0617-y Zbl1318.20049
  10. [10] Hazrat R., Vavilov N., Zhang Z., Relative unitary commutator calculus, and applications, J. Algebra, 2011, 343, 107–137 http://dx.doi.org/10.1016/j.jalgebra.2011.07.003 Zbl1245.20064
  11. [11] Hazrat R., Vavilov N., Zhang Z., Relative commutator calculus in Chevalley groups, J. Algebra, 2013, 385, 262–293 http://dx.doi.org/10.1016/j.jalgebra.2013.03.011 Zbl1292.20053
  12. [12] Hazrat R., Vavilov N., Zhang Z., Multiple commutator formulas for unitary groups, preprint available at http://arxiv.org/abs/1205.6866v1 Zbl1245.20064
  13. [13] Hazrat R., Zhang Z., Multiple commutator formulas, Israel J. Math., 2013, 195(1), 481–505 http://dx.doi.org/10.1007/s11856-012-0135-8 Zbl1292.20054
  14. [14] Jose S., Rao R.A., A local global principle for the elementary unimodular vector group, In: Commutative Algebra and Algebraic Geometry, Contemp. Math., 390, American Mathematical Society, Providence, 2005, 119–125 http://dx.doi.org/10.1090/conm/390/07298 
  15. [15] Mason A.W., On subgroups of GL(n, A) which are generated by commutators. II, J. Reine Angew. Math., 1981, 322, 118–135 Zbl0438.20034
  16. [16] Petrov V.A., Stavrova A.K., Elementary subgroups in isotropic reductive groups, St. Petersburg Math. J., 2009, 20(4), 625–644 http://dx.doi.org/10.1090/S1061-0022-09-01064-4 Zbl1206.20053
  17. [17] Quillen D., Projective modules over polynomial rings, Invent. Math., 1976, 36, 167–171 http://dx.doi.org/10.1007/BF01390008 Zbl0337.13011
  18. [18] Rao R.A., Basu R., Jose S., Injective stability for K 1 of the orthogonal group, J. Algebra, 2010, 323(2), 393–396 http://dx.doi.org/10.1016/j.jalgebra.2009.09.022 Zbl1195.19001
  19. [19] Stavrova A., Homotopy invariance of non-stable K 1-functors, J. K-Theory (in press), DOI: 10.1017/is013006012jkt232 
  20. [20] Stepanov A., Vavilov N., On the length of commutators in Chevalley groups, Israel J. Math., 2011, 185, 253–276 http://dx.doi.org/10.1007/s11856-011-0109-2 Zbl1262.20054
  21. [21] Suslin A.A., On the structure of the special linear group over polynomial rings, Math. USSR-Izv., 1977, 11(2), 221–238 http://dx.doi.org/10.1070/IM1977v011n02ABEH001709 Zbl0378.13002
  22. [22] Suslin A.A., Kopeiko V.I., Quadratic modules and the orthogonal group over polynomial rings, J. Soviet Math., 1982, 20(6), 2665–2691 http://dx.doi.org/10.1007/BF01681481 Zbl0497.20038
  23. [23] Taddei G., Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau, In: Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory, Contemp. Math., 55, American Mathematical Society, Providence, 1986, 693–710 http://dx.doi.org/10.1090/conm/055.2/1862660 
  24. [24] Tits J., Systèmes générateurs de groupes de congruence, C. R. Acad. Sci. Paris, 1976, 283(9), A693–A695 Zbl0381.14005
  25. [25] Vaserstein L.N., On the normal subgroups of GLn over a ring, In: Algebraic K-Theory, Lecture Notes in Math., 854, Springer, Berlin-New York, 1981, 456–465 
  26. [26] Vaserstein L.N., On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J., 1986, 38(2), 219–230 http://dx.doi.org/10.2748/tmj/1178228489 Zbl0578.20036
  27. [27] Vavilov N.A., Stepanov A.V., Standard commutator formulae, Vestnik St. Petersburg Univ. Math., 2008, 41(1), 5–8 http://dx.doi.org/10.3103/S1063454108010020 
  28. [28] Vavilov N.A., Stepanov A.V., Standard commutator formulae, revisited, Vestnik St. Petersburg Univ. Math., 2010, 43(1), 2010, 12–17 http://dx.doi.org/10.3103/S1063454110010036 
  29. [29] Wendt M., A1-homotopy of Chevalley groups, J. K-Theory, 2010, 5(2), 245–287 http://dx.doi.org/10.1017/is010001014jkt096 Zbl1200.14039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.