Efficient representations of Green’s functions for some elliptic equations with piecewise-constant coefficients
Open Mathematics (2010)
- Volume: 8, Issue: 1, page 53-72
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Ang W.T., Clements D.L., A boundary-integral equation method for the solution of a class of crack problems, J. Elasticity, 1987, 17, 9–21 http://dx.doi.org/10.1007/BF00042444 Zbl0602.73096
- [2] Clements D.L., Haselgrove M.D., A boundary-integral equation method for a class of crack problems in anisotropic elasticity, Int. J. Comput. Math., 1983, 12, 267-278 Zbl0501.73099
- [3] Courant R., Hilbert D., Methods of Mathematical Physics, vol.2, Interscience, New York, 1953 Zbl0051.28802
- [4] Deutz J.W., Schober H.R., Boundary value problems using Green’s functions, Comput. Phys. Commun., 1983, 30, 87–91 http://dx.doi.org/10.1016/0010-4655(83)90125-X
- [5] Dolgova I.M., Melnikov Yu.A., Construction of Green’s functions and matrices for equations and systems of elliptic type, Translation Russian PMM (J. Appl. Math. Mech.), 1978, 42, 740–746 http://dx.doi.org/10.1016/0021-8928(78)90017-5
- [6] Duffy D., Green’s Functions with Applications, CRC Press, Boca Raton, 2001 Zbl0983.35003
- [7] Embree M., Trefethen L.N., Green’s functions for multiply connected domains via conformal mapping, SIAM Rev., 1999, 41, 745–761 http://dx.doi.org/10.1137/S0036144598349277 Zbl0938.30003
- [8] Gradstein I.S., Ryzhik I.M., Tables of Intergrals, Series and Products, Academic Press, New York, 1980
- [9] Irschik H., Ziegler F., Application of the Green’s function method to thin elastic polygonal plates, Acta Mech., 1981, 39, 155–169 http://dx.doi.org/10.1007/BF01170339 Zbl0459.73047
- [10] Marshall S.L., A rapidly convergent modified Green’s function for Laplace equation in a rectangular region, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 1999, 155, 1739–1766 http://dx.doi.org/10.1098/rspa.1999.0378
- [11] Melnikov Yu.A., Some applications of the Green’s function method in mechanics, Internat. J. Solids Structures, 1977, 13, 1045–1058 http://dx.doi.org/10.1016/0020-7683(77)90075-0
- [12] Melnikov Yu.A., Koshnarjova V.A., Green’s matrices and 2-D elasto-potentials for external boundary value problems, Appl. Math. Model., 1994, 18, 161–167 http://dx.doi.org/10.1016/0307-904X(94)90259-3 Zbl0796.73006
- [13] Melnikov Yu.A., Shirley K.L., Matrices of Green’s type for the potential equation on a cylindrical surface joined to a hemisphere, Appl. Math. Comput., 1994, 65, 241–252 http://dx.doi.org/10.1016/0096-3003(94)90180-5 Zbl0815.65119
- [14] Melnikov Yu.A., Green’s Functions in Applied Mechanics, Comput. Mech. Publications, Boston - Southampton, 1995 Zbl0898.73001
- [15] Melnikov Yu.A., Influence functions for 2-D compound regions of complex configuration, Comput. Mech., 1996, 17, 297–305 http://dx.doi.org/10.1007/BF00368552 Zbl0845.35016
- [16] Melnikov Yu.A., Green’s function formalism extended to systems of mechanical differential equations posed on graphs, J. Eng. Math., 1998, 34, 369–386 http://dx.doi.org/10.1023/A:1004396614908 Zbl0928.34024
- [17] Melnikov Yu.A., Influence Functions and Matrices, Marcel Dekker, New York - Basel, 1999
- [18] Melnikov Yu.A., Sheremet V.D., Some new results on the bending of a circular plate subject to point forces, Math. Mech. Solids, 2001, 6, 29–46 http://dx.doi.org/10.1177/108128650100600102 Zbl1024.74034
- [19] Melnikov Yu.A., Matrices of Green’s type of steady-state heat conduction in multiply connected piecewise homogeneous regions, Eng. Anal. Bound. Elements, 2003, 27, 779–787 http://dx.doi.org/10.1016/S0955-7997(03)00044-4 Zbl1045.80001
- [20] Melnikov Yu.A., Influence functions of a point source for perforated compound plates with facial convection, J. Eng. Math., 2004, 49, 253–270 http://dx.doi.org/10.1023/B:ENGI.0000031187.96637.ea Zbl1155.80002
- [21] Morse P.M., Feshbach H., Methods of Theoretical Physics, vol.2, McGraw-Hill, New York - Toronto - London, 1953 Zbl0051.40603
- [22] Pan E., Han F., Green’s functions for transversely isotropic piezoelectric multilayered half-spaces, J. Eng. Math., 2004, 49, 271–288 http://dx.doi.org/10.1023/B:ENGI.0000031183.83519.19 Zbl1068.74541
- [23] Roach G.F., Green’s Functions, Cambridge University Press, New York, 1982
- [24] Sheremet V.D., Handbook of Green’s Functions and Matrices, WITPress, Southampton - Boston, 2002
- [25] Smirnov V.I., A Course of Higher Mathematics, Pergamon Press, Oxford - New York, 1964 Zbl0121.25904
- [26] Stakgold I., Green’s functions and Boundary Value Problems, John Wiley, New York, 1980
- [27] Tewary V.K., Wagoner R.H., Hirth J.P., Elastic Green’s functions for a composite solid with a planar interface, J. Mater. Res., 1989, 4, 113–123 http://dx.doi.org/10.1557/JMR.1989.0113
- [28] Tewary V.K., Elastic Green’s function for a bimaterial composite solid containing a free surface normal to the interface, J. Mater. Res., 1991, 6, 2592–2608 http://dx.doi.org/10.1557/JMR.1991.2592
- [29] Ting T.C.T., Green’s functions for a bimaterial consisting of two orthotropic quarter planes subjected to an antiplane force and a screw dislocation, Math. Mech. Solids, 2005, 10, 197–211 http://dx.doi.org/10.1177/1081286505036318 Zbl1074.74018
- [30] Yang B., Tewary V.K., Efficient Green’s function method of line and surface defects in multilayered elestic and piezoelastic materials, Comput. Model. Eng. Sci., 2006, 15, 165–178
- [31] Yang B., Wong S.-C., Qu S., A micromechanics analysis of nanoscale graphite platelet-reinforced epoxy using defect Green’s function, Comput. Model. Eng. Sci., 2008, 24, 81–94